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1. Introduction

The mining sector in Africa is experiencing an unprecedented boom, driven by require-
ments of the transition to cleaner energy (Pörtner et al., 2022). While this can bring
economic opportunities, mining also creates many negative externalities. It has been
linked to pollution, environmental change, and biodiversity loss, as well as corruption,
conflict, and child labor that undermine livelihoods.1 These externalities are striking
and may have far-reaching impacts that could offset the benefits of minerals. However,
reliable and generalizable insights into these impacts remain scarce — particularly in
a development context where fledgling institutions struggle to internalize the costs of
mining, and negative impacts often go unmitigated.

In this paper, we provide causal evidence for the impacts of water pollution from
mines on vegetation and agriculture in Africa. We exploit a natural experiment for
identification, where mine locations see a discontinuous jump in water pollution that
follows river networks. Mines cause a sharp drop in vegetation health downstream,
for which regions upstream can serve as a control group. To implement this research
design, we use fine-grained river basins as our unit of analysis. We overcome data
limitations by using satellite-derived peak vegetation indices with appropriate land
use masks to measure vegetation health and agricultural productivity across the
continent. By combining this information with a comprehensive dataset of mining
sites, we can estimate the causal effects of water pollution from mines across Africa
with unprecedented scope.

Our research design identifies impacts of mines on vegetation that are mediated
by water.2 The primary mechanism is water pollution; mines are known to cause
acidification, elevated salinity, and heavy metal contamination. These pollutants
affect vegetation and agricultural productivity by disrupting plant physiology, soil
microbiomes, and nutrient uptake. Secondary mechanisms include adaptation be-

1Aska et al., 2024; Berman, Couttenier, and Girard, 2023; Berman, Couttenier, Rohner, et al., 2017;
Giljum et al., 2022; Girard, Molina-Millán, and Vic, 2024; Knutsen et al., 2016; Macklin et al., 2023;
Santana et al., 2020, See, for instance,

2Our design has several notable parallels in the literature. Most closely related, Gittard and Hu (2024)
investigate the impact of industrial mining on health outcomes in Africa, with impacts transmitted via
water pollution. Sigman (2002) finds increased water pollution upstream of international borders,
providing evidence of free-riding at a national level, while Lipscomb and Mobarak (2017) show that
this problem also exists within countries. Dias, Rocha, and Soares (2023) exploit the discontinuity to
identify the impacts of glyphosate use in the cultivation of soybean in Brazil on birth outcomes, and
E. Strobl and R. O. Strobl (2011) assess the impact of dams on agricultural productivity in Africa.
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haviors — farmers switching crops or relocating in response to water pollution. The
many other effects of mining, such as air pollution or economic effects, that are not
directed along river flows are netted out by our research design.

The main contribution of our paper is the robust causal estimation of mining im-
pacts on vegetation health that are mediated by water pollution — one important
and previously neglected externality of mining. While hydrological studies suggest
that vast areas and millions of livelihoods are affected by river pollution from mining
(Macklin et al., 2023), causal evidence remains scarce and limited in scope. Previ-
ous research has investigated various other impacts of mining,3 and many studies
document pollution from mine sites.4 The link between mining, water pollution, and
vegetation health, however, remains underexplored at larger scales. Our study closes
this gap by contributing strong causal evidence for negative effects across diverse
mining operations throughout Africa.

Our study also speaks to several related strands of the literature. We add to earlier
research on water pollution in a development context, typically focused on drinking
water (e.g. Olmstead, 2010), by highlighting that water quality serves as a broad
ecosystem service — not only an end in itself but also a means to other services
(Keeler et al., 2012). Our work complements research on looming water scarcity
that acknowledges pollution concerns (e.g. Jones, Bierkens, et al., 2023; Van Vliet,
Flörke, and Wada, 2017), as well as recent studies that use remote-sensing methods
to assess the impacts of mining (e.g. Giljum et al., 2022) in a data-scarce environment
(see Maus and Werner, 2024). To the extent that higher-income countries drive the
demand for minerals and outsource polluting industries to lower-income countries, our
results can be seen in the context of global environmental justice (see, e.g., Banzhaf,
Ma, and Timmins, 2019).

We find that mines have considerable negative effects on vegetation downstream.
Overall, peak vegetation is reduced by approximately 1.3 percent at the mean; for
croplands specifically, peak vegetation is reduced by about 1.4 percent at the mean.
These effects are economically meaningful — the immediately impacted area (up
to around 33 km downstream) alone stretches over 280,000 km2, of which 74,000
are croplands — corresponding to the total cropland area of Ghana. Conservative
estimates place the resulting loss of cereal crops at 91,000 tons annually, although

3Aragón and Rud, 2015; Aska et al., 2024; Berman, Couttenier, Rohner, et al., 2017; Gittard and Hu,
2024; Goltz and Barnwal, 2019; Ofosu et al., 2020.

4Awotwi et al., 2021; Du et al., 2024; Duncan, 2020; Mulenga et al., 2024; Wu et al., 2023.
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suggestive evidence indicates that effects persist much further downstream. We
additionally investigate impact heterogeneities to identify important mechanisms,
and find the largest negative effects in fertile regions and ones where gold mining
predominates.

Our findings have important practical implications — agriculture plays a vital role
in local livelihoods and economies, and large, fertile, populated areas are affected
by mines. Water pollution from mines can cause great economic and nutritional
disruptions, affecting the already severe and worsening food insecurity in Africa.
From a policy perspective, our study highlights the severe lack of accountability
mechanisms for the mining industry and the scarcity of data to assess their impacts.5

As a result, current research is limited in scope and imperfect proxies constrain the
types of effects that can be detected. Remote-sensing approaches can help bridge this
gap efficiently, but rely on conventional high-quality data for calibration.

The remainder of this paper is structured as follows. In the next section, we provide
background and intuition for the key components of our analysis. In Section 3, we
describe the specific data and empirical strategy that we use to implement our research
design. Section 4, presents the main results, potential heterogeneities, and robustness
checks for our findings. Finally, we discuss our results and their implications in
Section 5, and conclude in Section 6.

2. Background and Intuition

This section introduces key components of our study and explains the intuition behind
our research design. We examine how mining operations affect vegetation and
agriculture through water pollution, using river basins as natural experimental units
and satellite-derived indices to measure outcomes. This approach allows us to isolate
causal effects by comparing areas upstream and downstream of mines.

2.1. Mines and mining in Africa

Mining on the African continent has experienced considerable growth, largely driven by
the increasing global demand for minerals and metals (ICMM, 2022). This expansion
presents both opportunities and challenges for African economies. While mining can

5Auld, Betsill, and VanDeveer, 2018; Jones, Graham, et al., 2024; Maus and Werner, 2024, Also see.
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generate employment and stimulate local economic development (Bazillier and Girard,
2020; Goltz and Barnwal, 2019; Gräser, 2024; Ofosu et al., 2020), it also brings
substantial risks. Resource wealth may crowd out other industries, drive corruption
and conflict (Berman, Couttenier, and Girard, 2023; Berman, Couttenier, Rohner,
et al., 2017; Knutsen et al., 2016), and mining drives rapid environmental changes
(Aska et al., 2024; Barenblitt et al., 2021; Giljum et al., 2022; Girard, Molina-Millán,
and Vic, 2024) and creates pollution with considerable impacts on people and their
environments (Awotwi et al., 2021; Macklin et al., 2023).

Mines affect vegetation and agriculture through multiple channels, with water
pollution playing a particularly important role (Santana et al., 2020). Mining disturbs
orders of magnitude more material than the metal eventually extracted, creating
erosion, and generating waste materials. These waste products include sediment, rock,
and (heavy) metals, and are stored as ‘tailings’, which are large deposits of byproducts.
Tailings and toxic chemicals used in processing are well-known ecological risks (see,
e.g., Wu et al., 2023, for a meta-analysis of sediment pollution in China). Sulfides
cause acid mine drainage, leading to acidification that can persist for hundreds of
years, degrades water quality, and devastates aquatic ecosystems (Du et al., 2024;
D. B. Johnson and Hallberg, 2005). Sodium cyanide and (in artisanal mining) mercury
are used for the extraction of gold (Duncan, 2020; Malone et al., 2023; Verbrugge,
Lanzano, and Libassi, 2021), reduce biodiversity, disrupt nutrient cycles, and cause
long-term alterations of sediment chemistry.

Water plays a central role in the environmental impacts of mining. Operations
require copious amounts of water for processing, which is often returned to the
environment contaminated with chemicals, heavy metals, and sediment. Tailings
are oxidized by air and weathered by rain, which steadily causes pollution of water
resources as they feed into rivers (Schwarzenbach et al., 2010). The resulting pollution
from heavy metals (Frossard et al., 2018), increased salinity (Russ et al., 2020; Zörb,
Geilfus, and Dietz, 2019), and acidification (Du et al., 2024) impact vegetation health
via plant physiology and growth, by disrupting nutrient uptake, and by impairing
soil microbiomes. (See Appendix B1 for a literature overview on the effects of water
pollution and plant health].

Beyond water pollution, mines also affect vegetation through air pollution — partic-
ularly from coal mining and processing of metals in smelters (Fugiel et al., 2017; Miao,
Huang, and Song, 2017; Pandey, Agrawal, and Singh, 2014). For Ghana, Aragón
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and Rud (2015) find that air pollution from gold mining in Ghana reduced total
factor productivity in the agricultural sector by 40%, mostly through direct effects on
crop health by air and the resulting soil pollution. Socioeconomic factors constitute
another pathway through which mines affect agriculture and vegetation. Corruption,
conflict, and weak institutions have been linked to mining and are detrimental to
agricultural productivity (Wuepper, Wang, et al., 2023). Pollution also has negative
impacts on labor supply (Hanna and Oliva, 2015) and productivity (Graff Zivin and
Neidell, 2012), human capital accumulation (Currie et al., 2009), and mining indus-
tries affect local income and employment (see, e.g., Bazillier and Girard, 2020; Gräser,
2024; Kotsadam and Tolonen, 2016). These impacts may, in turn, affect agricultural
productivity.

These risks of mining are particularly acute in Africa, where mines often lack
effective oversight (Macklin et al., 2023). The mining industry and its large indus-
trial mining sites have been slow to adopt global regulations,6 while the prevalent
small-scale, artisanal mines often operate outside regulatory frameworks entirely. As
a result, artisanal miners often employ particularly dangerous processing methods,
such as the use of mercury for gold mining (Barenblitt et al., 2021), and have little
incentive to manage tailings in sustainable ways.

The combination of expanding mining operations and weak institutional oversight
endangers both the environment and local populations. Countries that lack robust
institutional frameworks to monitor and regulate mining face severe challenges in
managing its detrimental externalities. This situation is especially concerning given the
heavy reliance on subsistence agriculture, looming food insecurity, and the potential
long-term consequences of environmental degradation (see, e.g., Audry et al., 2004;
D. B. Johnson and Hallberg, 2005).

2.2. River basins and water streams

River basins are an ideal unit of observation for studying water-mediated impacts of
mining due to their natural hydrological properties. A river basin is defined as the
area that is drained by a river and its tributaries. Following the prevailing elevation

6A recent exception is the 2020 Global Industry Standard on Tailings Management (GISTM; UNEP,
2023), which was established to prevent future tailing dam failures after the catastrophic dam
collapse at Vale’s Corrego de Feijao mine in Brazil.
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and slope, all surface waters in the area converge to a single point.7 Basin boundaries
are defined by topological features such as ridges and hills, creating naturally distinct
hydrological units. This definition can be applied recursively, ranging from continental
to local scales and giving rise to a hierarchical system of nested basins, in which larger
basins are divided into smaller sub-basins that merge at river confluences (Lehner
and Grill, 2013).

The most important property of river basins for our analysis is the unidirectional
flow of surface water.8 Water flows downstream, following elevation gradients and
carrying pollutants with it. This creates a natural discontinuity at the mine site:
downstream basins may be affected by contaminated water, while upstream basins
remain unaffected and can serve as controls. A basin’s distance to the mine site
reflects the intensity of the treatment, as well as the degree to which treated and
control units are comparable.

We use fine-scale river basins, illustrated in the left panel of Figure 1, as our units
of observation. These basins have an average area of 124.4 km2, diameter of 12
km, and elevation differences of eleven meters, providing sufficient resolution to
detect localized impacts of mining. Their relatively small size ensures that relevant
factors vary smoothly between adjacent basins, suggesting that discontinuities in
vegetation and agricultural productivity can be attributed to mine sites themselves.
The boundaries of river basins are determined by natural topographic features, relative
to which exact mine locations can reasonably be considered as random. While rivers
often serve as natural borders in political and administrative contexts, the basin-level
is rarely considered outside specialized hydrological studies.

2.3. Agricultural productivity from space

Measuring the impacts of mining on agricultural productivity in Africa presents
significant challenges that we address using remote sensing data. For our analysis,
we need a temporally and spatially consistent measure of agricultural production.
Traditional methods like surveys or censuses face several challenges with consistency,
availability, and accuracy in the context of our study. The continent is characterized by
diverse climates, cropping systems, and agricultural practices. Smallholder farming
7Two prominent examples are the Mississippi River, which drains most of the mainland United States
into the Gulf of Mexico, and the Congo Basin, which covers most of the Democratic Republic of the
Congo (DRC) and drains into the Atlantic.

8River basins correlate strongly with groundwater systems, but only capture the flow of surface water.
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Figure 1: Example of two Angolanmine sites (dotted, and labeled with ‘0’) and their upstream
and downstream basin systems (left), and measurements of the Enhanced Vegetation Index
(EVI) for croplands and general vegetation over the years 2016, 2017, 2018, 2019, 2020,
2021, 2022, and 2023 for the right basin system (right).
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plays an important role, agriculture is predominantly rainfed, and conventional
agricultural statistics are scarcely available.

To overcome these data limitations, we employ satellite-derived vegetation indices
as proxies for vegetation health and agricultural productivity. This provides us with
consistent measurements for the entire continent, with high granularity across time
and space. Specifically, we use the Enhanced Vegetation Index (EVI) to construct
a peak vegetation index, which correlates strongly with measures of gross primary
production of vegetation and agriculture (D. M. Johnson, 2016; Shi et al., 2017),
and is frequently used in similar analyses (see, e.g., Agarwal et al., 2024; Asher and
Novosad, 2020; Wuepper, Wang, et al., 2023). The EVI offers several advantages over
alternative vegetation indices (see Zeng et al., 2022, for a recent review) that make it
suitable for our application.9

To distinguish between agricultural areas, general vegetation, and other land use
types not relevant for our analysis, we apply vegetation and cropland land use masks
to the EVI. An example of both EVI measurements along a basin system is provided in
Figure 1, which demonstrates how the indices capture vegetation patterns up- and
downstream of a mining site. By combining these satellite-derived measures with our
basin-level approach, we can identify granular discontinuities in vegetation health
and agricultural productivity, while maintaining consistent measurement across the
diverse environmental and institutional conditions throughout Africa.

2.4. Research design

Our empirical strategy integrates these three components — mining sites, river basins,
and remotely sensed vegetation — to identify causal effects of mining activity on agri-
cultural productivity and vegetation health downstream across the African continent.
Figure 2 illustrates our approach.

First, we identify basins that contain mine sites. Mines impact their surrounding
environment in various ways and create a sharp discontinuity in vegetation patterns
at the basin boundaries. Second, we identify basins located up- and downstream of
the mine basin within the river network. Third, we isolate the river-mediated impact

9Compared to the commonly used Normalized Difference Vegetation Index (NDVI), the EVI reduces
the influence of atmospheric distortions and background noise caused by canopy and soil (Gao et al.,
2000). Moreover, the EVI does not suffer from the NDVI’s scaling problems, and can accurately
convey variation in low as well as high biomass conditions where the NDVI tends to saturate (Huete
et al., 2002).
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Upstream

Mine Site

Downstream

River impacts

Other impacts

Figure 2: Illustration of the research design. The comparison of up- and downstream basins
enables the identification of mine impacts that are mediated by the river.

that follows the directed flow of water along this network. We assess the vegetation
downstream and contrast it with vegetation upstream, allowing us to control for
general effects of mines (e.g., air pollution or economic effects) and identify the causal
effect that is mediated by water.

Our strategy relies on the key assumption that the observed discontinuity along
the river stems from the mine itself. This is plausible when mine sites are located
quasi-randomly, and not driven by factors related to vegetation or agricultural poten-
tial. Mine locations are primarily determined by the location of accessible mineral
deposits. While potential confounders exist, e.g., due to strategic placement near
transportation infrastructure, these are unlikely to confound the effect of interest for
two reasons. First, their impacts would need to align with the direction of water flow,
and second, they would have to affect the mine location at the fine-scale basin level.

The immediate vicinity of mine basins provides strong causal identification, but
estimating the reach and decay of impacts over greater distance presents additional
challenges. In areas close to mines, basin characteristics remain balanced due to the
granular level of observations. At greater distances, however, fundamental differences
may emerge due to broader geographical patterns, and minor differences may begin
to accumulate in impact. Other sources of water pollution, for example, are slightly
more likely to be located downstream, as many mines are located at higher altitudes
and river transport is economically attractive. While these factors arguably do not
affect the discontinuity on-site, they could confound our assessment of impact decay.
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To address these challenges while providing suggestive evidence for the extent
of impacts, we divide our analysis in two parts. First, we focus on effects in the
immediate vicinity, which can be cleanly causally identified in a model-agnostic
fashion. Second, we impose a specific model on the impact of mines to investigate
the potential range and decay of impacts over greater distances while accounting
for potential confounders. This dual approach allows us to maintain rigorous causal
identification while also exploring broader spatial patterns of mining impacts.

Mediators and limitations Our research design only captures impacts of mining on
vegetation that are mediated by rivers, providing a focused but partial view of mining’s
total external effects. Direct impacts on-site, such as land clearing, and impacts that
are not directed along the river, such as dust deposition on plants or employment
effects, are not captured by our estimates. This limitation helps us isolate a specific
and possibly far-reaching impact channel — water pollution — but means that our
results represent a lower bound for the total impact of mining.

The effect of water pollution that we identify in our study may be mediated by
several factors that influence our interpretation of estimates. Most importantly, human
adaptation to impacts is reflected in our estimates. If farmers relocate in response to
pollution, this could amplify the measured impact. Conversely, other adaptations such
as changing crops or farming practices might attenuate impacts. Another important
mediator is soil pollution, which particularly affects the prevalent rainfed agriculture
in Africa. As water pollutants settle in the soil and groundwater, they can impact
plant growth in areas that are not directly irrigated from the polluted river. This
means our estimates likely capture both direct water effects on irrigated agriculture
and indirect soil-mediated effects on rainfed farming.

These mediating factors help contextualize our findings and suggest directions
for future research. Studies of effective adaptation behavior, in particular, may be
helpful to mitigate negative impacts. While our approach cannot disentangle these
mechanisms, it provides robust causal evidence for the overall impact of mining on
downstream vegetation and agricultural productivity — one important and neglected
instance of the many externalities of mining.
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3. Materials and Methods

This section describes the dataset and methods used. First, we describe the basin-level
dataset and how it is constructed, and elaborate on individual variables included.
Then, we present our empirical strategy.

3.1. Dataset

Our dataset is a balanced panel of 𝑁 = 14, 334 river basins in Africa that we observed
over eight years (from 2016–2023). These basins, drawn from the HydroBASINS
dataset (see Lehner and Grill, 2013), are delineated using information on water
body locations, elevation, terrain slope, and stream gradients. The dataset has a
hierarchical structure with twelve nested levels, where basins at each level are of
comparable size, of which we use the most fine-scale Level 12.10 The key feature of
river basins is their directional water flow — water only moves downstream, meaning
that upstream basins remain unaffected by conditions further down the stream. For
our analysis, we classify basins into three categories:

1. mine-basins, with a mine site in their catchment area,

2. downstream basins, which are downstream of any mine-basin,

3. upstream basins, which are upstream of all connected mine-basins.

For this classification, we consider up- and downstream chains of basins (departing
from mine-basins) with a maximum order of ten (or an average river distance of 105
km).11

We observe a total of 1,900 mine-basins, 6,307 upstream, and 6,127 downstream
basins, which are visualized in Figure 3. (For a summary of orders and distance, see
Table E2 in the Appendix.) Their average size is 120 km2, for a total area of 1,701,343
km2. Each basin in our dataset is unique, although they may be related to multiple
mine-basins. In this case, we associate the basin with the nearest mine-basin. The next
(i.e., order one) downstream basin is unique for each basin, but there may be multiple
upstream basins of any given order. This is because streams can join, but do not split

10At Level 12, there are 241,026 basins on the African continent that cover an average ({5, 50, 95}th
percentile) area of 124.4 (11.6, 131.4, 218.9) km2.

11Our analysis is focused on the immediate vicinity, and more restrictive sample subsets are considered
as robustness checks for our results.
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Figure 3: Basins in the sample and their treatment status. Basemap imagery provided by
Esri, Maxar, Earthstar Geographics, and the GIS User Community.

in the direction of their flow (compare the basins labeled ‘−4’ in Figure 1). Not all
mine-basins have a full set of up- or downstream basins, and the number generally
decreases with order. When mine-basins are located in or near the top or bottom
branch of a river network, or if another mine-basin is situated up- or downstream of
the mine-basin, there will be fewer relevant basins up- and downstream. More details
on the basin data are provided in Appendix A.

Summary statistics Table 1 presents summary statistics for the most important
variables used. This includes vegetation indices, geographical information on elevation
and slope, meteorological information on temperature and precipitation, as well as
population and accessibility to urban areas. Variables are mapped from a raster level
to the level of basins, with the exact procedures described below. Table 1 shows
that vegetation indices using the cropland mask are slightly higher than for the
general vegetation mask. Since not all basins contain croplands, the sample that we
use to assess impacts on agricultural productivity is smaller. The variables exhibit
strong variation across our sample, including, e.g., high and low altitude basins as
well as densely populated and unpopulated ones. The characteristics of up- and
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downstream basins are well-balanced across covariates.12 Downstream basins exhibit
slightly higher precipitation, and are more populated, but less accessible, and lie at
lower altitudes. These minuscule differences across our treatment and control groups
alleviate concerns of potential non-comparability.

Table 1: Summary statistics for the basin-level dataset.
Variable Unit 𝑁𝑇 Mean St. Dev. Min. Max.

Peak Vegetation Index [−1, 1] 110,576 0.428 0.154 0.016 0.993
Mean Vegetation Index [−1, 1] 110,576 0.279 0.112 −0.021 0.578
Peak Cropland Veg. Index [−1, 1] 93,036 0.464 0.133 −0.068 0.978
Mean Cropland Veg. Index [−1, 1] 93,036 0.298 0.101 −0.104 0.601
Elevation Meters 110,568 820.4 481.1 −118.3 3,059.7
Slope Degrees 110,568 2.23 2.34 0.0 20.9
Max. Temperature Degree Celsius 110,572 34.3 3.9 15.6 48.8
Precipitation Millimeters 110,576 901.8 595.2 0.64 4,456.7
Population Capita 110,576 8,471 37,716 0.0 1,396,921
Accessibility Minutes 110,528 164.3 179.1 1.0 2,659.9

3.1.1. Vegetation and agriculture

To measure agricultural productivity and vegetation health, we rely on the remotely
sensed Enhanced Vegetation Index (EVI). The EVI offers important advantages over
traditional crop statistics for our analysis. It offers the high spatial granularity needed
to measure localized impacts, is frequently available over the investigated period, and
it is consistent over time and space, avoiding cross-country differences in calculation
and reporting.

We process the raw EVI data (by Didan, 2015, available every 16 days at a 250 m
resolution) in several steps to create our outcome measures. First, we apply quality
filters to minimize the impact of cloud cover. Then, we use yearly land use masks (from
the European Space Agency’s (ESA) Climate Change Initiative (CCI), by Defourny
et al., 2024, available at a 300 m resolution) to identify relevant areas with croplands
and vegetation, while excluding irrelevant features such as water bodies. For each
basin, we aggregate the mean EVI over 16-day periods and compute the annual

12See Table E3 in the Appendix for summary statistics that are split by treatment status, Figure D11 for
a visualization of sample distributions of geophysical and meteorological variables. Appendix C3.1
includes further information about balance, and Figure D12 shows absolute standardized mean
differences for all variables.
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maximum EVI, producing a peak vegetation index. This peak index correlates strongly
with measures of gross primary production of vegetation (see Shi et al., 2017, for an
assessment) and crop yields (see, e.g., Azzari, Jain, and Lobell, 2017; D. M. Johnson,
2016).

We apply two different land use masks to create two distinct outcome measures.
For agricultural productivity, we focus on all forms of croplands as well as mosaics
between croplands and natural vegetation, which are common classifications for
the small-scale farming that is common in Africa. For general vegetation health, we
additionally consider land use classes comprising trees, shrubland, grassland as well
as sparse and flooded natural vegetation. As a robustness check, we consider an
alternative cropland mask that is specifically targeted to the African continent (Digital
Earth Africa, 2022). This mask is only available for 2019 (which introduces noise),
but yields results that are qualitatively and quantitatively similar.

While the EVI offers several advantages over alternative vegetation indices (see
Zeng et al., 2022, for a recent review), we validate our findings using the Normalized
Difference Vegetation Index (NDVI) as an alternative outcome measure and find
comparable results. We also link our EVI-based measures to agricultural yields and
production values from AReNA-DHS (IFPRI, 2020) for additional validation in our
setting and to gauge the quantity of impacts measured. While the EVI provides
consistent measurements at a fine scale, it has limitations: it does not capture specific
crops or yields, displaying heterogeneous correlations, complicating interpretation,
and introducing noise into the analysis.

We consider a number of robustness checks to limit the impacts of our specific
choice of outcome variables. This includes the aforementioned alternative information
sources, (NDVI, AReNA-DHS, and Digital Earth Africa, 2022) as well as alternative
aggregation procedures and land use masks. For one, we use the annual mean EVI
instead of the maximum, to capture the full year. We also compute the pixel-level
maximum before aggregating to better capture vegetation with different peak timings.
Finally, we test a narrower version of the vegetation mask that excludes sparse and
flooded natural vegetation. As we show in Section 4.3, our results remain robust
across these variations.
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3.1.2. Treatment

Our treatment is derived from the spatial location of mining sites, which we obtain
from Maus, Giljum, et al. (2022). Their dataset integrates multiple sources, including
the SNL Metals & Mining database, and provides comprehensive coverage of both
industrial and artisanal mining operations. This source offers two key advantages
over other databases. First, it addresses the noise in commonly used point location
data by verifying actual mine locations through satellite imagery. Second, Maus,
Giljum, et al. (2022) scan for and delineate mining areas (including features such
as tailings dams, waste rock dumps, water ponds, and processing plants) within
a 10-kilometer buffer around known locations, allowing them to capture smaller
artisanal mining operations that often develop near larger industrial sites. This helps
minimize potential attenuation of our estimates that could occur from missing or
misclassified mine locations.

While the dataset by Maus, Giljum, et al. (2022) provides extensive spatial coverage,
it lacks mine characteristics and temporal information beyond being anchored in 2019.
This limitation, however, is less concerning given the persistence of mines and their
impacts. Pollution from mines may persist long after operations have ceased (e.g.
Audry et al., 2004), and even ‘inactive’ mines continue to affect local environments
through illegal artisanal mining and ongoing pollution from tailings (Macklin et al.,
2023). To still address these limitations in our analysis and investigate potential
heterogeneities, we (a) evaluate time-based subsets, (b) differentiate between active
and inactive sites using longitudinal mine site data (from Sepin, Vashold, and Kuschnig,
2025), and (c) incorporate information on commodity types from supplementary
sources.13

To construct our treatment variable, we first identify mine-basins by intersecting
the centroids of mining sites from Maus, Giljum, et al. (2022) with hydrological basins
from Lehner and Grill (2013). We then classify basins as upstream or downstream
relative to these mine-basins (as described above), with downstream basins forming
our treatment group and upstream basins serving as controls. While mine-basins
themselves are also treated, the water-mediated effects within them are not identified
by our research design, and not interpreted by us. We consider basins up to order

13Jasansky et al., 2023; Padilla et al., 2021; S&P Global Market Intelligence, 2025, Specifically, the
Global Energy Monitor database, as well as.
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ten, but focus our analysis on the first three basins in either direction, as they share
characteristics and would be most strongly impacted by the treatment.

We measure treatment intensity in terms of the distance to the mine-basin. For
our primary specification, we consider the ordinal position of basins relative to the
mine-basin as the treatment variable. This agnostic approach avoids common specifica-
tion issues in regression discontinuity designs,14 while sacrificing degrees of freedom.
Additionally, we consider different specifications based on river distance. Estimates
from an exponential decay specification that we use to extrapolate insights, and alter-
native linear-quadratic distance specifications, including established robust methods,
appear in Appendix C3.

3.1.3. Other factors

We consider several covariates that could confound our analysis of mining impacts
or add more in-depth insights to it. Our selection of control variables is particularly
focused on geographical characteristics that relate directly to river basin delineation,
and ones that could create imbalances between treatment and control groups.

For the key geographic variables of elevation and slope, which define the flow along
basins as well as their boundaries, we utilize high-resolution gridded data (Amatulli
et al., 2018). We aggregate this data from its original 30 arcsecond resolution
(approximately 802–926 meters in our study area) to the basin level by averaging.
Soil characteristics also influence vegetation health and may vary systematically with
elevation. To account for this, we determine the primary soil class in each basin
based on data from the SoilGrids project (Hengl et al., 2017), which has a 250-meter
resolution.

Climate and socioeconomic factors become increasingly important at larger dis-
tances frommine sites, where treatment and control groups may diverge systematically.
As climate controls, we use precipitation data from the Climate Hazards Center In-
fraRed Precipitation with Station (CHIRPS) dataset (Funk et al., 2015), which is
particularly accurate for Africa (Dinku et al., 2018), as well as temperature data from
TerraClimate (Abatzoglou et al., 2018). Both datasets provide monthly measurements
at resolutions of approximately 4 and 5 kilometers. As an alternative, we also consider
meteorological data from the Climatic Research Unit (Harris et al., 2020). Following

14Cattaneo, Idrobo, and Titiunik, 2019; Gelman and Imbens, 2019, For instance, the choice of appropri-
ate polynomials or bandwidth for continuous running variables, see.
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established practices in research of vegetation dynamics, we use annual precipitation
totals and maximum monthly temperatures in our analysis.

For socioeconomic controls, we include the total population (from WorldPop, 2018)
and average accessibility, measured by the travel time to the nearest city (Weiss et al.,
2018), per basin. Both datasets provide information at a 1-kilometer resolution and
are aggregated to the basin level. We use values from 2015 to control for initial
conditions in our study period. To further isolate the effect of interest from possible
mediators, we also consider the number of violent events from the Armed Conflict
Location and Event Database (ACLED; Raleigh et al., 2010) and average annual air
pollutant concentrations (from Shen et al., 2024).

Heterogeneity The impacts of mines may vary across different environmental condi-
tions and mine characteristics. We investigate this by examining heterogeneity across
four main dimensions.

First, we assess spatial heterogeneities of basins. We differentiate them by biomes
using the Ecoregion classification of Dinerstein et al. (2017), which divides ecosys-
tems of regional extent that capture different types of agriculture and vegetation.
Furthermore, we consider country groups based on their primary crops and varying
crop calendar cycles, based on the regional classification of the US Department of
Agriculture (USDA).15 These environmental categorizations help us understand how
mining impacts might differ across diverse ecological contexts.

Second, we analyze how the intensity of mining operations and the activity of
mining sites relates to their impacts. We proxy for intensity via the total mine area
per mine-basin, and use the development of mining areas over time to proxy for
activity. For the latter, we rely on a longitudinal extension of the mine dataset by
Sepin, Vashold, and Kuschnig (2025), who automatically delineate mining sites over
time using a segmentation model and high-resolution satellite imagery. The temporal
information allows us to identify active mines based on their growth, and assess their
specific impacts.

Third, we investigate whether impacts vary by the types of minerals being extracted,
as different commodities use different processes, chemicals and techniques, and
coincide with different waste metals. For this analysis, we collate various data sources
and predict the most likely commodities mined in each basin using Gaussian process
15The classification (available at ipad.fas.usda.gov) divides the continent into North Africa, Southern

Africa, East Africa, and West Africa; due to limited observations, we merge North and East Africa.
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regression (which is detailed in Appendix C2). This helps us identify particularly
important types of mining sites.

Lastly, we examine how effects differ based on land suitability for agriculture. Using
information from the Global Agro-Ecological Zones (GAEZ) modeling framework
(Fischer et al., 2021), we construct a composite measure of crop suitability for each
basin. We calculate average suitabilities for thirty crop types per basin, and select
the maximum value that represents the suitability for the best-suited crop. Then, we
categorize basins into high, medium, and low productivity classes, allowing us to
assess which agricultural areas are most affected by mining.

3.2. Empirical strategy

We employ a regression discontinuity design (RDD) to identify the causal effects of
mines on vegetation and agricultural productivity downstream. Our identification
strategy exploits the natural discontinuity in the exposure to pollution along river
networks. Basins downstream of mines are exposed to contaminated water, while
upstream basins remain unaffected and can serve as controls.

Our application differs from standard RDDs in minor, but notable ways. Our running
variable — the distance to the mine basin — has a natural direction and coincides
with the treatment intensity. This directional feature strengthens our identification
strategy, while the latter presents an opportunity to investigate impact decay. We
also observe outcomes at the discontinuity itself. While parts of the mine basin are
impacted by contaminated water, others are not, and other third effects of the mine
may be present without a suitable control. Impacts on-site provide useful information
and suggestive evidence for further impacts of mine sites, but are not identified by
our strategy.

Let 𝑥 denote the directed distance from the mine, where we have 𝑥 = 0 at the mine
basin and 𝑥 < 0 before it. Following the notation of Gelman and Imbens (2019), we
can express the treatment effect as

𝜏(𝑥) = 𝔼 [𝑦𝑖(1) − 𝑦𝑖(0) ∣ 𝑥𝑖 = 𝑥] ,

where 𝑦𝑖(1), 𝑦𝑖(0) are potential outcomes of observation 𝑖 under treatment and
control conditions. We estimate the average treatment effect using the difference in
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conditional means between downstream and upstream locations:

𝜏(𝑥)𝐴𝑇𝐸 = 𝔼[𝑦obs
𝑖 ∣ 𝑥𝑖 = 𝑥, 𝑥 > 0] − 𝔼 [𝑦obs

𝑖 ∣ 𝑥𝑖 = 𝑥, 𝑥 < 0] .

Our estimation equation is

𝑦𝑖𝑚𝑡 = 𝜷′𝐹(𝑥𝑖) + 𝜽′𝑊𝑖𝑡 + 𝜇𝑚 + 𝜓𝑡 + 𝜀𝑖𝑚𝑡, (1)

where 𝑦𝑖𝑚𝑡 represents vegetation in basin 𝑖 near mine 𝑚 at time 𝑡, and 𝑥𝑖 is the
running distance. The vector 𝑊𝑖𝑡 contains basin characteristics,16 while 𝜇𝑚 and 𝜓𝑡

represent mine- and year-fixed effects. The error term 𝜀𝑖𝑚𝑡 is clustered by mine.
We operationalize distance via the function 𝐹(⋅), which returns a vector, separating
upstream, downstream, and mine basins.

Main specification Our preferred specification uses the basin order as distance, i.e.,
𝑥𝑖 ∈ {−10,… , 10}, and operationalizes it via indicators. This approach highlights
basin to basin discrepancies and remains agnostic about functional forms, instead
relying on local information at the level of our observations. Specifically, we let 𝐹(⋅)
return indicators

𝑓(𝑥)𝑗 = 𝕀 (𝑥 = 𝑗) for 𝑗 ∈ {−10,… ,−2, 0, 1,…10} .

Here, we omit the first upstream basin (order −1) as the reference category. Our
design identifies differences between estimates at equivalent (absolute) distance (e.g.,
𝜏(8) = 𝛽8 − 𝛽−8), which we report as effect of interest. For ease of interpretation, we
also report pooled estimates comparing the first three basins.17

River distance specification To assess the decay of impacts systematically, we specify
an alternative model using the river distance in kilometers as the running variable.
We operationalize this as

𝐹(𝑥) = exp{−𝛾 × |𝑥|} + 𝕀 (𝑥 = 0) + exp{−𝛿 × 𝑥} × 𝕀 (𝑥 > 0) ,

16Of the main set of covariates, only the meteorological variables are time-varying; the other variables
are time-invariant (geophysical) or fixed at pre-period levels (socioeconomic).

17We let 𝑓(𝑥)𝒥 = 𝕀 (𝑥 ∈ 𝒥) for 𝒥 ∈ {−10,… ,−4, 0, {1, 2, 3} , 4,…10} , and focus on 𝛽{1,2,3}.

20



Mines → Rivers → Yields

where + separates variables, and the parameters 𝛾, 𝛿 capture the rates of exponential
impact decay. The exponential form assumes that impact decay is proportional to
the impact level, a common assumption in analyses of water pollution. Compared to
linear and linear-quadratic functional forms (which we also consider), this functional
form allocates more leverage, and thus higher influence, to observations at shorter
distances and not vice versa.

3.2.1. Identifying assumption

Our key identifying assumption posits no other discontinuous changes impacting
vegetation at the mine basin. While not directly testable, several factors support the
plausibility of this assumption. River basins are delineated by natural geographic
features that vary smoothly across space. Our use of the most granular basin level
(Level 12) minimizes systematic differences between adjacent basins.

To validate our results, we conduct a battery of robustness checks to address
potential threats to identification. First, we control for an extensive set of basin char-
acteristics: geophysical features (elevation, slope, distance to coast, soil composition),
meteorological conditions (temperature, precipitation), and socioeconomic indicators
(population, accessibility, conflict). Second, we use these variables as placebo out-
comes and look for discontinuities at mine basins, which would violate our identifying
assumption. Third, we implement a matching procedure based on these covariates to
ensure that up- and downstream basins are comparable across relevant dimensions.
This reduces model dependency and strengthens our argument for causal effects.

As an additional set of robustness checks, we vary the sample definition to ensure
that our results are not driven by our particular sample. Our main sample is already
limited to the vicinity of mines (the maximum order of ten corresponds to an average
distance of 100 km), and we emphasize estimates for their immediate surroundings.
We also restrict this sample in additional ways. We (a) exclude the mine basin itself,
(b) only retain first order basins, and (c) only consider basin chains with at least
one up- and one downstream basin. To address temporal uncertainty stemming
from the mine dataset, we consider two subsamples: (d) post-2019, and (e) from
2018–2020. Lastly, we repeatedly randomize the treatment assignment and compare
estimates with our sample. The consistency of results across these variations supports
the robustness of our findings.
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These complementary approaches address different potential threats to identifica-
tion. The covariate controls and matching handle potential confounding variables,
the placebo tests check for other discontinuities, and the sample variations ensure
our results are not artifacts of particular specification choices. Together, they provide
strong support for our identification strategy, suggesting that estimates convey the
water-mediated impact of mines on vegetation.

4. Results

Our analysis reveals that mines significantly reduce vegetation health in downstream
areas through water pollution. We begin by focusing on effects in the immediate vicin-
ity of mines, i.e., downstream basins up to order three, for which causal identification
is strongest. In Section 4.1, we investigate potential heterogeneities in these impacts
to better understand the underlying mechanisms. Next, we extrapolate beyond the
immediate vicinity and investigate the reach and decay of effects in Section 4.2.
Finally, we assess the robustness of our estimates in Section 4.3.

Table 2 presents estimates of the impact of mines on general (left columns) and
cropland-specific (right columns) vegetation downstream, measured via a peak veg-
etation index, based on the EVI (Enhanced Vegetation Index). For each outcome,
we present estimates from both a plain specification without covariates and a fully
saturated specification with controls. The reported estimates represent the causally
identified average treatment effect (ATE), i.e., the difference in vegetation health
between downstream (treated) and upstream (control) basins at equivalent distances
from mine basins. The upper panel of Table 2 shows results for individual basins up to
order five, while the lower panel pools the first three downstream basins to provide a
more statistically powerful and readily interpretable estimate of the immediate effect.
Complete results, with estimates for all basin orders and covariates, are available in
Table E4 in the Appendix.

The treatment indicators show statistically significant negative effects on vegetation
downstream of mines, for both indices of general and cropland-specific vegetation.
The (gradual) inclusion of covariates changes estimates only marginally (see Table E4
for extended results), suggesting that findings are not driven by confounding factors.
Estimates suggest that the effect permeates the immediate vicinity and may extend
beyond them with similar magnitude, though declining statistical significance.
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Table 2: Main estimation results.

Outcome Peak Vegetation Peak Cropland Veg.
(Specification) (Plain) (Full) (Plain) (Full)

Individual Order
Downstream (1st) -0.0045∗∗∗ -0.0043∗∗ -0.0051∗∗ -0.0050∗∗

(0.0017) (0.0018) (0.0025) (0.0025)

Downstream (2nd) -0.0049∗∗ -0.0048∗∗ -0.0058∗ -0.0067∗∗
(0.0022) (0.0024) (0.0031) (0.0032)

Downstream (3rd) -0.0085∗∗∗ -0.0087∗∗∗ -0.0088∗∗ -0.0099∗∗∗
(0.0028) (0.0029) (0.0037) (0.0038)

Downstream (4th) -0.0049∗ -0.0062∗ -0.0029 -0.0044
(0.0030) (0.0033) (0.0038) (0.0040)

Downstream (5th) -0.0034 -0.0053 0.0007 -0.0016
(0.0033) (0.0037) (0.0042) (0.0045)

Fit statistics
Observations 110,576 110,524 93,036 93,000
R2 0.903 0.908 0.816 0.822

Pooled Order
Downstream (1st–3rd) -0.0057∗∗∗ -0.0056∗∗∗ -0.0064∗∗ -0.0068∗∗∗

(0.0018) (0.0020) (0.0025) (0.0026)
Fit statistics

Observations 110,576 110,524 93,036 93,000
R2 0.903 0.908 0.816 0.822

Controls
Geophysical No Yes No Yes
Meteorological No Yes No Yes
Socioeconomic No Yes No Yes

Fixed-effects
Year (2016–2023) Yes Yes Yes Yes
Mine Yes Yes Yes Yes

Note: The table reports estimates of the average treatment effects by basin order based on Equation (1).
The left columns hold results for the overall peak vegetation index; the right columns for the
cropland-specific peak vegetation index. The first and third column include no covariates, whereas
columns two and four include the full set of control variables. Estimates in the upper panel correspond
to the average effect at individual orders, while the lower panel reports a pooled estimate for the three
basins that are immediately adjacent to the mine basin. All specifications include mine and year fixed
effects. Standard errors are (in brackets) and clustered at the mine level; significance levels are
indicated as ***: 0.01, **: 0.05, *: 0.1.
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For general vegetation, the estimated ATEs for the first three basins downstream
of the mine are −0.0057 and −0.0056 (with and without covariates) and highly
significant (𝑝 < 0.01). This is mirrored by estimates for individual basins, where
ATE for the first three basins are significant (𝑝 < 0.05) and range from −0.0043
to −0.0087. Estimates for the subsequent basins, including the fourth and fifth
downstream basin, are consistently negative, but show a drop of statistical significance
and a minor drop in magnitude. The reductions in the immediate vicinity correspond
to a 1.28–1.35% decrease relative to the sample mean. The impacted area, i.e.,
vegetation in the first three downstream basins, stretches across 255,000 km2.

For croplands, the estimated ATEs are slightly larger. For the first three basins
downstream of the mine, estimates are −0.0064 and −0.0068 (with and without
covariates) and highly significant (𝑝 < 0.01). Individual-level estimates for these
basins range from −0.0050 to −0.0099 and are significant (𝑝 < 0.05) with one
exception. Results for higher-order basins are similar to those for maximum vegetation,
but the drop in magnitude is larger and there is one instance of an (insignificant)
positive estimate. Compared to the sample mean, these estimates imply an index
reduction of 1.38–1.47% over an affected cropland area of 74,000 km2.

Contextualizing impacts To translate these peak vegetation index reductions into
agricultural terms, we correlated our measure with direct measures of agricultural
productivity (from AReNA-DHS, see Appendix B2). We estimate that being immedi-
ately downstream of a mine is associated with a 0.57–0.61% decrease in cereal yields,
a 1.59–1.70% decrease in the value of cereal production, and a 2.16–2.31% decrease
in the value of overall crop production. The scale of these impacts becomes apparent
when considering the affected area — the first three downstream basins cover 280,000
km2, 74,000 of which are croplands. This corresponds to the total cropland area of
Ghana, falling just between the cropland areas of the United Kingdom and Malaysia.

Using an average cereals yield of two tons per hectare (based on AReNA-DHS), this
corresponds to an annual loss of 91,000 tons of cereals for consumption. For additional
context, the World Food Programme (WFP), the largest humanitarian organization
globally, distributed approximately 1.7 million tons of food to over 38 million recipients
in African countries in 2023. Our conservative estimate of the agricultural production
loss caused by water pollution from mines, just in their immediate vicinity, represents
about 5.4% of this major food aid program.
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4.1. Heterogeneity

Next, we investigate how our results vary along several dimensions to identify where
mining impacts on vegetation and agriculture are most pronounced. We examine
heterogeneity related to the characteristics of basins (biome, regions, and suitability
for crop cultivation) as well as mine characteristics (total mining area, activity, and
commodity type).

Figure 4 provides an overview of the results. We present specifications with full
controls and pooled estimates for the first three basins, allowing for full heterogeneity
by re-estimating with different subsets of the sample. Estimation results are available
in Table E6 and Table E7 in the Appendix.

Environmental heterogeneity We first analyze spatial heterogeneities of basins,
which are visualized in the upper half of Figure 4. To check for differences across
biomes, we assign each basin to one of three broad ecological groups — grasslands,
forests, and deserts — that are aggregated from the more granular ecoregions of
Dinerstein et al. (2017). We find negative effects for both the grassland and forest
biomes. Grasslands constitute 69% of the vegetation sample and 74% of the cropland
sample, while forests make up 15% and 17%. The effect sizes are comparable to
the baseline, although impacts in forest biomes appear somewhat larger. In desert
biomes (representing 15% and 8% of the sample), we find no significant effect on
either the cropland or overall peak vegetation, likely reflecting limited vegetation to
be impacted in these regions.

For regional differences, we separate samples based on the classification system
of the USDA.18 We find substantial effects in West Africa, which represents 29% of
the vegetation sample and 26% of the cropland sample. In Southern Africa (61%
and 64%) or North & East Africa (10%), we find no significant effects. This regional
disparity likely relates to mining practices and commodity types — artisanal gold
mining is particularly common in West Africa. Additionally, our identification strategy
may reach its limits in the case of South Africa, where a vast cluster of mines permeates
entire basin systems, complicating the isolation of downstream effects.

18The system seeks to reflect differences in crop types and cycles. The regions are West Africa (with the
Burkina Faso, Guinea, Mali, Ghana, Nigeria, and Niger as the most represented countries with over
250 basins), Southern Africa (with South Africa, Zimbabwe, Namibia, Tanzania, Botswana, Angola,
the DRC, Zambia, and Mozambique), and North & East Africa (where only Morocco exceeds 250
basins), which we pool.
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Figure 4: Dots indicate the average treatment effect in the first three basins; whiskered lines
indicate 90% and 95% confidence intervals.
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The agricultural potential of affected regions captures another important dimension
of impacts. We follow the GAEZ framework in categorizing basins into high, medium
and low crop suitability groups, based on the maximum suitability across 30 crops. We
find significant negative effects on basins with high crop suitability, which comprise
36% of the vegetation and 39% of the cropland sample. These estimates exceed the
baseline for both the general and cropland-specific vegetation. In contrast, estimates
for medium (43% and 47%) and low suitability (22% and 13%) are smaller and
statistically insignificant. This pattern is concerning because more than 35,000 km2

(over a third) of highly suitable land in the immediately affected basins is actively
used for crop production, raising concerns for subsistence farming and food security.

Mine heterogeneity Turning to mine characteristics, we first examine whether mine
size influences downstream impacts. We progressively restrict the sample to mine
basins with mining areas of at least 0.5 km2, 1 km2, and 2.5 km2, which reduces the
sample to around 51%, 40%, and 25% of its original size. For overall vegetation,
we observe a clear increase in effect size as mining area increases. For the 2.5
km2 cutoff, the estimate is 30% higher compared to the baseline. This result aligns
with expectations, as larger mines typically produce more discharge material and
cause stronger contamination of water systems. For croplands, however, we find
imprecise estimates with no discernible trend in magnitudes. We interpret this as
suggestive evidence for adaptation — farmers may respond to large, salient mine sites
by relocating or changing crops.

For mining activity, we use growth as a proxy and analyze subsets of active mines
that exhibited (i) any growth, (ii) at least 10% growth, or (iii) at least 25% growth
over the observed period. Our results show no substantial heterogeneity along this
dimension for either natural vegetation or the cropland vegetation. Effect estimates
remain stable, although precision decreases with smaller sample sizes (approximately
67%, 63%, and 55% of the baseline). This suggests that our dataset of mine locations,
which is anchored in 2019, adequately captures the relevant impacts of mining
sites regardless of their status. The lack of heterogeneity may also reflect offsetting
factors: expanding mines might implement better precautions, while inactive, poorly
maintained sites could produce considerable pollution

Finally, we examine how impacts vary by commodity types. Since our primary
dataset lacks commodity information, we compile data from related sources to identify
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the most likely commodity (or mix) at each mine site (see Appendix C2 for details).
We focus on four main commodities that are well-represented in the data and for which
we can reasonably exclude interference by other commodities: gold, diamonds, copper,
and coal. The results reveal a particularly strong negative effect for gold mining, which
we isolated in 26% of the vegetation and 29% of the cropland sample. Compared to
the baseline, point estimates for gold mining are 40% larger for vegetation overall and
75% larger for croplands. This finding aligns with earlier research identifying gold
mining as especially damaging to agriculture and the environment. Gold extraction
uses toxic chemicals like mercury and sodium cyanide for extraction,19 and artisanal
gold miners rarely have the capacity or incentives to mitigate their impacts. Among
other commodities — diamonds (13% of the sample), copper (6%), and coal (8%)
— only diamond mining shows marginally significant negative effects on overall
vegetation.

These heterogeneity findings show that the impacts of mining are not uniform,
but vary substantially across environmental conditions and mining practices. The
concentration of effects in agriculturally suitable areas, in West Africa, and for gold
mining highlights priorities for interventions and alleys for future research.

4.2. Impact decay

We have established significant and economically meaningful downstream impacts
of mining in the immediate vicinity. An important question remains, however: How
far downstream do these effects persist? The spatial extent of effects is crucial to
understand the overall impact, gauging the size of the externality, and designing
effective mitigation strategies. While critically important, this analysis extends beyond
our identification strategy — at greater distance basins diverge in characteristics and
results cannot be interpreted as strictly causal. Our analysis here provides suggestive
evidence and highlights the potential overall stream-mediated impact of mining.

The range of impacts is related to the types of mediators that it arises from. Vege-
tation is affected by various types of water pollution from mining, including heavy
metals, acidification, and salinity (see Appendix B1 for further details). While con-
taminants gradually disperse along streams, buildup and tipping points could lead to
more persistent impacts. Acidification, for instance, is initially triggered by pollution
from mines but is sustained by extremophile microbes. We empirically investigate the
19Duncan, 2020; Malone et al., 2023; Verbrugge, Lanzano, and Libassi, 2021.
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decay of impacts by (1) extrapolating our analysis beyond the immediate vicinity, and
(2) imposing an exponential decay functional form to estimate the speed of decay.
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Figure 5: Estimated order coefficients for all up- and downstream basins (with the mine-basin
in the center) for the overall peak vegetation index (green circle) and the cropland-specific
index (yellow triangles) with full covariates. Whiskers represent 95%-confidence intervals.

Figure 5 visualizes estimates along basin orders, comparing all basins to the one
immediately upstream of the mine (order -1).20 If mines had no impacts, we would
expect flat estimates across all basin orders. Non-directed mine impacts (e.g., from
air pollution) would appear as a V-shape, where the right ‘wing’ of the V would be
shifted by downstream effects and rotated if these effects decay with distance.

The figure reveals three notable patterns. First, negative impacts persist beyond
the immediate vicinity of mines; effects appear to increase in size after the sixth
basin. Second, trajectories differ slightly between general vegetation and croplands.
Croplands suffer slightly larger impacts near mines but show more decay at larger
distances. Impacts on general vegetation are more persistent, yielding significant
negative estimates even at large distances. This discrepancy may reflect adaptation
behavior by farmers, a result that is supported by our heterogeneity analysis. Third,

20The visualization differs from the coefficients in Table 2 and Table E4 (which report differences
between equidistant up- and downstream basins, and not deviations from the first upstream basin)
to better convey changes from basin to basin.
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there is an indication of a V-shaped pattern upstream, with the right side being rotated
and shifted downward.

To further investigate decay patterns, we apply an exponential distance decay
function to the downstream distance, which aligns with hydrological models of con-
taminant dissipation. The detailed results appear in Appendix C1.1. In addition to
the strength of the effect, we estimate the rate of decay and allow it to vary from
meter to kilometer scales. We find minimal decay over our sample range, and overall
impacts that are comparable to the immediate vicinity of mines. The effect on overall
vegetation downstream begins at −0.0062 and halves after 281 km, which extends
beyond the support of our sample. For croplands, the effect begins at −0.0068 and
decays by half at a distance of 72 km, diminishing to 10% of its initial value at 234
km.

These findings highlight that vast areas downstream of mines may be impacted by
their water pollution, extending considerably beyond the immediate vicinity examined
in our main analysis (also see Macklin et al., 2023). Isolating the nature of these
effects and identifying specific mechanisms driving them is an important avenue for
future research.

4.3. Robustness

To ensure the validity of our main findings, we conduct a comprehensive set of
robustness checks that address potential concerns about our empirical strategy. We
organize these robustness checks into six categories: (i) included covariates, (ii)
outcome measures, (iii) sample definition, (iv) unobserved factors, (v) covariate
balance, and (vi) placebo tests. Figure 6 visualizes estimates under these various
checks; the complete results appear in the Appendix.21

Covariates First, we examine whether our results are sensitive to the choice of
control variables. We test four variations: (1) adding controls for air pollution based
on PM2.5 concentrations, (2) controlling for conflict intensity, (3) using distance
to coast as a geographic control, and (4) using alternative meteorological data for
rainfall and temperature. None of these modifications substantially alter our baseline

21Further details are provided in Appendix C3.1 and Appendix C3.2; Tables E8 to E11 report the full
estimates.
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Figure 6: Dots indicate the average treatment effect in the first three basins; whiskered lines
indicate 90% and 95% confidence intervals.
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findings, suggesting that our results are not driven by omitted variables related to
these factors.

Outcome measures Next, we assess whether our results depend on our specific
choice of outcome variables. We (1) substitute the EVI with the Normalized Difference
Vegetation Index (NDVI), and (2) use alternative land use masks for vegetation and
cropland-specific vegetation index.22 We also (3) construct the peak EVI to reflect
pixel-level peaks (accounting for varying seasonality) before aggregation to the basin
level, and (4) use the mean annual EVI to reflect vegetation over the full year, instead
of the peak value. These variations change the magnitude of estimates due to different
sample moments, but the qualitative results remain consistent, showing significant
negative effects of mines on downstream vegetation.

Sample definition We also verify the robustness of our results across different sample
restrictions. First, we focus on periods around the 2019 satellite imagery used in mine
delineation: (1) the post-2019 period only, and (2) a narrower 2018–2020 window.
Second, we modify the spatial sample by (3) only including basin systems with at least
one up- and downstream basin, (4) excluding mine basins entirely, and (5) analyzing
only immediate first-order basins. While the precision of estimates decreases with
smaller samples, our key finding remains robust.

Unobserved factors We further account for potentially confounding, unobservable
factors through additional fixed effects structures. We introduce hierarchical fixed
effects at the (1) Level 6 and (2) Level 8 super-basins, which contain an average of
67 and 6 of our Level 12 basins. We also (3) add country-by-year fixed effects to
control for changing national conditions, and (4) include mine-specific linear time
trends. These specifications yield consistent results, indicating that our findings are
not driven by unobserved spatial or temporal factors.

Covariate balance To address potential imbalance between treatment and control
groups, we use coarsened exact matching (Iacus, King, and Porro, 2012). We match
upstream and downstream basins on (1) elevation, slope, and soil type in a basic

22We use a narrower version for the vegetation mask that excludes sparse and flooded vegetation, and
an Africa-specific cropland mask that is anchored in 2019 (Digital Earth Africa, 2022).
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specification, then add (2) temperature, and precipitation in an extended version.
The matched samples achieve excellent balance on observables (see Figure D11 and
Figure D12 in the Appendix), and the resulting estimates are significant and of larger
magnitude. This further corroborates the validity of our identification strategy.

Placebos Finally, we conduct two additional validation exercises. First, we randomly
reassign the treatment status across basins and re-estimate a total of 5,000 times,
finding no evidence of the impacts observed in our actual analysis (see Appendix C3.2
for details, and Figure D10 for results). Second, we use our control variables as
placebo outcomes and find no discontinuities at mine locations (see Appendix C3.3
for details), confirming that our identification strategy isolates mining impacts rather
than pre-existing environmental or social differences.

Collectively, these robustness checks demonstrate that our findings of negative min-
ing impacts on downstream vegetation and agriculture remain consistent for diverse
specifications. This consistency strengthens confidence in our causal interpretation
and the reliability of our results.

5. Discussion

Our results provide strong causal evidence for water-mediated effects of mines on veg-
etation and agriculture. We find reductions of peak vegetation indices of 1.28–1.35%
for all vegetation and 1.38–1.47% for croplands specifically. In this section, we discuss
the mechanisms behind these impacts, how to interpret them, which limitations to be
aware of, and what our results imply for policy and future research.

5.1. Mechanisms

Our research design identifies mining impacts on vegetation that are specifically
mediated by water streams, separating them from other effects of mining. Two main
mechanisms help explain our findings — water pollution and human responses to it.

Water pollution

Water pollution emerges as the dominant and evident mechanism behind our observed
effects. It is a major and well-documented externality of mining, and Sub-Saharan
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Africa has been projected to become a global hotspot for it (Jones, Bierkens, et al.,
2023). Our main results only provide indirect evidence for this mechanism, so we
additionally analyze available water quality data (from United Nations Environment
Programme, 2025) to help confirm the role of water pollution in Appendix B3. The
data shows that water quality is markedly lower in mine basins and downstream
regions as compared to upstream basins. Key indicators — including electrical con-
ductivity (measuring salinity), sodium discharge and adsorption, and sulfate concen-
trations (which can cause acidification) — show patterns that are consistent with
mine-induced pollution.

Water quality data supports our interpretation, but comeswith important limitations.
Available samples from our observation period are exclusively from South Africa (water
quality monitoring is notoriously sparse in Africa; see Jones, Graham, et al., 2024),
were obtained at irregular intervals, and analyzed using different methods. Critically,
they lack measurements of heavy metals, which are among the most harmful mining
pollutants, and specific chemicals used in ore processing. This prevents us from
directly differentiating between, e.g., mercury-based or cyanide-based processing
in gold mining, which could affect both the magnitude and reach of environmental
impacts (Verbrugge, Lanzano, and Libassi, 2021).

Adaptation responses

Human adaptation represents a secondary mechanism influencing our results. Farmers
may respond to water pollution in ways that could amplify or attenuate our measured
impacts on vegetation and agriculture.

Evidence from related literature on air pollution suggests complex response patterns.
While pollution primarily affects plant growth directly, it also affects the health, and,
in turn, labor supply and productivity of farmers.23. These impacts can further affect
income, the allocation of land and labor, and other relevant factors. The final result
of these effects is ambiguous, but their magnitude is likely constrained in our context,
where little fertilizer is used, and significant market frictions exist that deter migration
(Chen, Restuccia, and Santaeulàlia-Llopis, 2022).

In the case of directed water pollution, the adaptation of farmers plays an important,
immediate role. Farmers could shift towards cultivating crops with greater resilience

23Aragón and Rud, 2015; Fugiel et al., 2017; Kotsadam and Tolonen, 2016; Miao, Huang, and Song,
2017.
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to water pollution — substituting, for instance, lentil and maize for barley and millet,
which tolerate higher levels of salinity (Page et al., 2021). Agricultural practices
present another opportunity for adaptation. Importantly, farmers may reduce their
reliance on irrigation (or decide against transitioning to it in the first place) if water is
contaminated.24 We do not directly capture adaptation behaviors, but they represent
important avenues for future research and opportunities for mitigation.

5.2. Interpretation

Our analysis reveals mines’ considerable downstream impacts on vegetation and
agriculture, which are mediated by water pollution and adaptation, and thus likely to
accumulate and persist for many years. We find that the peak cropland vegetation
index is reduced by 1.38–1.47% of the sample mean. This effect size aligns with
other studies that use vegetation indices to approximate agricultural productivity. For
instance, Wuepper and Finger (2022) also use the peak annual EVI to proxy for yields
in 1 km2 grid-cells and find a 2.2% change in yields per step on their ten-step index
of institutions. Similarly, Asher and Novosad (2020) proxy agricultural yields via the
EVI, and find a 1.7 percent increase from the construction of new roads.

Translating these results into agricultural terms, we estimate that being immediately
downstream of a mine is associated with at least a 0.57–0.61% decrease in cereal
yields, a 1.59–1.70% decrease in the value of cereal production, and a 2.16–2.31%
decrease in the value of overall crop production. More than 74,000 km2 of smallholder
croplands are immediately affected (i.e., up to around 33 km downstream of mine
basins). This implies annual losses of over 91,000 tons of harvested cereal crops,
although our evidence suggests that effects may reach much farther downstream,
affecting considerably larger areas.

Importantly, our results only reflect one specific pathway among the many external-
ities of mines. Agriculture and vegetation are also affected by other mining-related
factors, such as air pollution (Fugiel et al., 2017), which our research design does not
capture. Meanwhile, water pollution from mines creates numerous other negative
effects, including water scarcity, biodiversity loss, and detrimental impacts on human
health and cognition (Gittard and Hu, 2024; Van Vliet, Flörke, and Wada, 2017;
Vörösmarty et al., 2010).

24While rainfed agriculture is not unaffected (water pollution affects groundwater and soil), impacts
are likely attenuated through the water cycle.
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While our findings must be understood within this wider context, we have reason
to believe that our estimates provide a lower bound for the specific water-mediated
pathway. First, our results reflect post-adaptation outcomes, incorporating mitigating
behaviors that farmers adopt in response to pollution. Second, the limited use
of irrigation means that estimates are attenuated and the full extent of impacts
does not emerge in practice. Third, our analysis is only focused on the immediate
vicinity of mines, where our research design allows for strong causal claims. Finally,
various sources of noise in our data represent a major limitation that likely leads to
conservative estimates of true impacts.

5.3. Limitations

Our analysis faces limitations that warrant discussion. Excess uncertainty from noisy
measurements is an important example, with reliance on remotely sensed vegetation
indices as a first source. While they offer consistent and highly granular measures of
vegetation health that enable our analysis, they come with inherent constraints. Our
peak vegetation indices perform well as a proxy, but do not capture all relevant phases
of crop development. Robustness checks with alternative measures soothe pressing
concerns, but cannot convey a full picture. Singular metrics cannot fully capture
the heterogeneity of impacts across different crop types, soil types, and climatic
conditions (Bolton and Friedl, 2013), and there is limited data for calibration. While
we relate our outcome measure to local agricultural data, this introduces additional
noise and likely results in attenuated estimates. Future research with a narrower
geographical focus could address this limitation by combining remote sensing with
more accurate and detailed agricultural data.

A second limitation concerns the information available about mining operations.
While we use a comprehensive dataset of mine sites with verified locations and their
surroundings (within a ten-kilometer radius), these data have constraints (see Maus,
Giljum, et al., 2022; Maus and Werner, 2024). Much relevant information on mining
sites — including their status, activity, production methods, and commodities mined
— is not directly available. We address this limitation partially by assessing mining
area growth over time and adding commodity information through supplementary
sources. However, we cannot disentangle artisanal and industrial mining operations,
which likely differ in management, processing, and impacts (Girard, Molina-Millán,
and Vic, 2024), and lack detailed information to narrow down relevant mechanisms.
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Lastly, our study only offers suggestive evidence for specific mechanisms and the
total range and impact of observed effects. Data on water quality and pollution
are scarce, and the available information is geographically patchy and inconsistent.
We investigate heterogeneity for different subsets, e.g., based on commodity types,
location, and mine growth, to infer potential mechanisms, but do not provide direct
evidence for specific mining activities impacting vegetation. Meanwhile, our research
design provides the conditions for identifying local treatment effects, but cannot
provide causal evidence for their reach. More in-depth analysis of mechanisms and
the reach of effects is left to future work.

5.4. Outlook

Our results have important implications for future research and policy. Two key goals
are (1) overcoming data scarcity, which constrains both scientific understanding and
policy responses, and (2) implementing targeted interventions at various governance
levels to mitigate the external costs of mining.

Data scarcity

A common theme across our analysis is the scarcity and poor quality of available data.
Addressing this gap is paramount, as improved information can advance research and
enable local policymakers to design effective mitigation strategies. Agricultural statis-
tics are challenging to collect for smallholder and subsistence farming, which limits
our understanding of impacts at the farm level. Information on mining sites remains
inadequate and poorly accessible (Maus and Werner, 2024), especially for artisanal
mines.25 Pollution data are essential to assess impacts, but similarly scarce (Jones,
Graham, et al., 2024). Where institutional capacities are lacking, community-based
water monitoring could serve as an inexpensive and effective complement (Ruppen,
Chituri, et al., 2021).

Remote sensing technologies play a crucial role, with considerable future potential
to further refine and extend new and existing data. For water pollution, satellite

25For artisanal mines in particular, data needs to be disseminated in a way that safeguards against
potential human rights abuses. Two examples for such data repositories are the International Peace
Information Service that collects data on artisanal mining in the Central African Republic, Tanzania,
Zimbabwe, and parts of the DRC, as well as the Revenue Development Foundation that supports
governments in managing their natural resources and collates data on mining sites in several West
African countries.
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imagery has already detected large spills or tailings dam failures (Rudorff et al., 2018;
Ruppen, Runnalls, et al., 2023), and refined approaches may help identify heavy
metal pollution (Swain and B. Sahoo, 2017). The monitoring of mines represents
another application (Maus, Giljum, et al., 2022) with considerable potential for
automating laborious tasks. For instance, Sepin, Vashold, and Kuschnig (2025) use
machine learning methods to automatically map the evolution of mining sites over
time. Vegetation indices already provide valuable proxies for agricultural productivity
— future work could integrate high-quality yield data into ready-made analytical
products. Beyond satellite-based imaging, unmanned aerial vehicles have developed
rapidly, and can offer higher-resolution data for monitoring critical locations.

Interventions

Policymakers can and should also address the external costs of mining today. Mining
concessions should explicitly recognize these externalities, and should factor in their
impacts on agriculture, which is vital for local economies and food security. Our results
provide concrete evidence for including water-mediated impacts in the allocation
of concessions. The formalization of artisanal mining, for example through official
titling, could increase miners’ incentives to invest in precautionary equipment. This
could reduce impacts at the source — with economic as well as health benefits for
humans and their environment.

Supranational interventions are essential in effectively addressing mining externali-
ties. These can help shift regulatory and monitoring burdens from mineral-producing
countries towards all that benefit from the extracted resources. For industrial mines,
the Global Industry Standard on Tailings Management (GISTM) presents an important
first step for international governance. Our findings highlight that not only catas-
trophic failures but also persistent water pollution requires attention. Similarly, the
Minamata Convention on Mercury targets mercury pollution, which is still used in
artisanal gold mining — the commodity we found to have the strongest downstream
impact. Going forward, supply chain measures could also help reduce the prevalence
of minerals sourced in harmful ways.26

26The European Union’s Deforestation Regulation (EUDR), which aims to prevent the conversion of
forests towards agricultural land, is a notable and recent example. It covers seven agricultural
commodities that are implicated in deforestation, and applies to companies that place these products
on the EU market.
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6. Conclusion

In this paper, we identified the causal effects of mining on agricultural productivity
mediated by water pollution. In a quasi-experimental research design, we used the
discontinuity from mine sites along a directed network of river basins for identification.
We compared differences in agricultural productivity, based on a remotely sensed
peak vegetation index, up- and downstream of mine locations. Our main specifica-
tion revealed a reduction of peak vegetation 1.28–1.35% for general vegetation and
1.38–1.47% for croplands immediately downstream of mines. This corresponds to
annual losses of 91,000 tons of cereals across 74,000 km2 of affected croplands.

Our results can be contextualized both quantitatively and in terms of policy. Cru-
cially, our estimates only reflect a specific part of the total external costs of mining
for agriculture. Our research design does not capture impacts that are not mediated
alongside rivers, such as air pollution or local labor markets. Furthermore, our esti-
mates of the water-mediated effect may be attenuated by our indirect measurement of
agricultural productivity. Despite these limitations, our findings inform the discussion
about resource extraction in Africa, particularly in regions with weak environmental
governance. The documented effects highlight the need for interventions that reduce
negative impacts of mining on water systems. Proper containment facilities, for in-
stance, should be required for industrial mining operations but also for the informal
mining sector, and especially in gold-mining regions, for which we found particularly
strong impacts. Enhanced monitoring of mines and surface water quality is necessary
to address data limitations we encountered, and provide a basis to understand impacts
and guide effective policies.

This study opens several promising avenues for future research. While the mine
dataset we use enables a comprehensive analysis across Africa, it lacks detailed
information on individual mine characteristics. Future studies that incorporate data
on containment facilities, mine types, and pollutants produced would allow for more
precise analyses of impacts. Similarly, spatial data on crop distributions could enable
detailed analyses of which crop types are most susceptible to mining-induced pollution,
and could help inform adaptation strategies. Different research approaches might also
address questions our design could not fully answer, such as disentangling the impacts
of industrial and artisanal mines or providing stronger evidence on how effects decay
with distance. Such research would further strengthen the evidence base for targeted
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interventions that balance the economic benefits of mining with its environmental
and human costs.
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A. Basins and Mines

Here, we describe the basin and mine datasets, and how we integrate them to create
our sample of interest.

A1. The HydroBASINS dataset

Our analysis uses river basins (watersheds) from the HydroBASINS dataset (Lehner
and Grill, 2013) as units of observation.27 This dataset divides all land mass on earth
into twelve levels of nested river basins, offering increasing granularity at each level.

Hierarchical basin structure The hierarchy begins at the least granular Level 1, where
each continent forms a single basin. Level 2 divides continents into nine similarly
sized units, while Level 3 delineates major river systems. Each subsequent level
follows hydrological principles to create up to nine sub-basins within each higher-level
basin. This nesting continues through Level 12, our chosen level of analysis, where
basins across Africa average 124.4 km2 in area.

A1.1. Basin delineation

The delineation process begins with the smallest sub-basins, which are aggregated
into larger units. In the ideal case, this leads to a unitary Level 3 basin that contains
a large river system. This system consists of a main stream flowing from its source
to either the sea or an inland sink. Along its course, the main stream is joined by
multiple tributary streams. Each such confluence presents an opportunity to delineate
two distinct basins: one encompassing the tributaries’ catchment area, and another
for the main stream.

To maintain accuracy, while avoiding excessive fragmentation, the authors maintain
thresholds before a confluence is used to delimit two basins:

• tributary streams must have a catchment area of (i.e., drain) at least 100 km2

to form their own tributary sub-basin,

• areas between qualifying tributary streams from inter-basins,

27We use the version of the dataset that specifically accounts for the position of lakes, delineating
lake-adjacent basins similarly to coastal basins.
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• if the catchment area of tributary streams or inter-basins exceeds 250 km2, they
are subdivided using artificial break points.

The resulting boundaries are hydrologically determined, and independent of political
borders, which facilitates our analysis.

Figure A1: Two forked upstream (Level 12)
basins join into a single (mine) basin fur-
ther downstream. The superimposed yel-
low lines indicate Level 8 basins; these con-
tain varying numbers of sub-basins (due to
a level-skipping mechanism), and clearly di-
vide tributary and main basins. The blue
lines, which represent river streams, provide
additional intuition for the basin topology.

Basin aggregation and coding The dataset employs a modified version of the Pfaf-
stetter coding system (K. L. Verdin and J. P. Verdin, 1999) to aggregate basins into
higher-level units. Each super-basin contains a maximum of nine sub-basins: (a) four
tributary basins, and (b) five sections of the main stream (as defined by tributary
confluences or the artificial breaking points). The HydroBASINS dataset departs from
the plain Pfafstetter coding in two notable ways:

1. it allows level-skipping when basin areas at a given level deviate significantly
from their peers,

2. it permits super-basins to contain fewer than nine sub-basins.

An example of the level-skipping mechanism is visible in Figure A1. Additional
adjustments of the HydroBASINS dataset concern endorheic (closed) basins and
islands. Islands are grouped with their associated continents at Level 1 and then
manually grouped or separated at Levels 2 and 3. At subsequent levels, basins are
nested in an island-specific Pfafstetter chain. Endorheic basins are contained entirely
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within one super-basin, but do not drain into that larger basin. For consistency, these
basins are linked to main streams via virtual links that do not correspond to actual
flows. We sever these virtual links for our analysis.

A2. The mine dataset

Our information on mine locations comes from Maus, Giljum, et al. (2022), who
developed a comprehensive dataset of mining areas by expanding on the Metals and
Minerals database (S&P Global Market Intelligence, 2025). While the SNL database
contains information on approximately 35,000 industrial mines globally, Maus, Giljum,
et al. (2022) enhanced this coverage with additional sources and visual inspection
of satellite imagery. Entries are generated by inspecting a 10 km buffer area around
recorded mine locations for signs of mining operations, which are then delineated.
This means that both active and abandoned industrial mines, as well as nearby artisanal
and small-scale mine sites, which often continue after industrial operations cease,
are covered. The resulting dataset contains 45,000 mine polygons across the globe,
around 5,000 of which are located in Africa. Their geographic distribution can be
seen in Figure A2.

A3. Integration of mine and basin data

The described datasets allow us to identify comparable areas that are affected and
unaffected by the stream impacts of mines. Specifically, we construct two chains of
basins in relation to each mine basin:

• Downstream basin chains: we follow the variable indicating the next basin until
the sea, a sink, or a distance threshold (ten basins in the main specification) is
reached.

• Upstream basin chains: we recursively track basins that reference the current
basin as the next one, until either an end or a threshold is reached.

As a result of this process, downstream chains follow a single path, while upstream
basins may fan out.28

28This is because river bifurcations are rare (and usually non-permanent), while confluences are
abundant. While theoretically possible, downstream bifurcations are ruled out by the HydroBASINS
dataset’s structure.
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Figure A2: Distribution of the mine polygons in Maus, Giljum, et al. (2022) (top-left).
Illustration of a mine that is entirely contained within one basin (top-right), mine clusters
that reach across multiple basins (bottom-left), and a number of interconnected and closely
adjacent basin chains (bottom-right).
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Themine basin Mine basins are assigned by intersecting the basins with the centroids
of the mine polygons by Maus, Giljum, et al. (2022). Two examples are shown in
Figure A2, where mines are represented by a pink dot within white mine basins. On
the left panel, we can see that the basin contains both areas that are downstream of
the mine, indicated by the superimposed river stream, and ones that are upstream. By
contrast, the downstream (upstream) basins, marked in brown (blue), and upstream
basins contain only areas that are (are not) affected by water flows passing the mine.

A3.1. Treatment assignment

Mines are usually spatially clustered, and, as illustrated in the right panel of Figure A2,
our dataset is no exception. This complicates the assignment of the treatment (control)
status based on the classification of up- and downstream basin chains, since a single
basin may appear in multiple chains. We apply the following rules:

• Basins that only appear in upstream chains are designated as upstream, i.e.,
control.

• Basins that appear in any downstream chain are designated as downstream, i.e.,
treated.

This coding affects, for example, the two basins directly to the south of the large mine
in the right panel of Figure A2. Even though they are upstream of the larger mine,
we designate them as downstream basins because they are downstream of (and thus
affected by) a set of smaller mines south of the larger mine. They thus cannot be
treated as upstream, that is, unaffected by a mine.

The described treatment assignment hinges on the length of basin chains, which we
set at a maximum order of ten. A greater threshold would result in long downstream
chains that reach into the control areas of distant mines, while a smaller threshold
relies on the quick dissipation of impacts or runs the risk of contamination. An
illustration is provided in Figure A2, where the downstream chain, which originates
from the mine cluster in the southeastern (bottom-right) corner, reaches into the
upstream area of a group of mines at the center of the map.
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B. Mining, Water Pollution, and Vegetation

In this section, we investigate the mechanisms behind our estimated causal effect,
linking Mines–Rivers–Yields. We begin by reviewing the literature on how mining
affects water quality and plant growth. Then, we correlate our satellite-derived
productivity measure (the maximum annual EVI) with agricultural production data
in the region, allowing us to quantify economic impacts. Finally, we analyze water
quality measurements to provide direct evidence of pollution as the primary mediator
of mining’s effects on vegetation.

B1. Mine impacts on water quality and vegetation

Numerous studies document the degradation of water quality downstream of mining
operations. This pollution affects both surface water and groundwater, and has
significant implications for agriculture and ecosystem health.

For Zimbabwe’s Deka River, Ruppen, Chituri, et al. (2021) documented a water
quality decline downstream of mining discharge points, with manganese concen-
trations reaching 70 times the safe limit and elevated levels of nickel, arsenic, and
salinity. Similarly, Duncan (2020) and Duncan, Vries, and Nyarko (2018) found
elevated concentrations of nickel, chromium, cadmium, and lead in Ghana’s Pra
and Fena rivers and their tributaries. They identify illegal mining activities as a key
source of these pollutants. In India, S. Sahoo and Khaoash (2020) found that 15%
of groundwater samples in the Brajrajnagar coal mining area were of poor quality,
with 43% requiring special treatment before agricultural use due to elevated heavy
metal concentrations. In Brazil, Santana et al. (2020) identified toxic levels of cad-
mium, lead, and uranium in water, while chromium, copper, nickel, and vanadium in
sediments exceeded international safety guidelines in the Jacaré and Contas rivers.
Collectively, these studies confirm mining as a major contributor to hazardous water
pollution that affects both human and agricultural systems.

B1.1. Water pollution and plant growth

Mining operations produce several forms of water pollution that impair plant growth
and development. These pollutants — primarily heavy metals, acidic drainage,
and dissolved salts — significantly reduce agricultural productivity through multiple
physiological pathways.
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Heavy metals Heavy metal contamination from mining represents a major threat
to plant health and crop yields, and acts by disrupting essential metabolic processes,
damaging cellular structures and the soil microbiome. Frossard et al. (2018) show
that mercury concentrations exceeding 2 mg/kg disrupt the soil microbiome, reduc-
ing nitrogen fixation and phosphorus solubilization by up to 20%. This disruption
correlates with approximately 25% yield losses in maize — a staple crop across much
of Africa. Similarly, lead concentrations above 50 mg/kg decrease chlorophyll content
by approximately 15% and inhibit root development, resulting in maize yield reduc-
tions of 30–35%. These effects are even more pronounced in leafy vegetables, which
show particularly rapid uptake of contaminants. The results of heavy metal pollution
include chlorosis, where leaves yellowing due to insufficient chlorophyll production,
and even cell death (necrosis).

Acid mine drainage Acid mine drainage represents one of the most severe forms of
water pollution from mining. When sulfide minerals in mine waste (such as pyrite)
are exposed to oxygen and water, they form sulfuric acid and dramatically lower
the pH level in affected watersheds. Extremophile microbes can contribute to this
process and can sustain it for decades or centuries (see, e.g. Nordstrom et al., 2000).
The acidification has profound effects on plant physiology and growth, and acts
by disrupting nutrient uptake of calcium and magnesium, reducing the availability
of nitrogen and phosphorus in soil, and increasing solubility of toxic metals like
aluminum and manganese. The impact on crop yields is substantial and varies by
crop type. Du et al. (2024) found an average yield reduction of 13.7% overall, with
more severe impacts on vegetables (33%), and significant effects on staple crops like
maize and wheat (18%). These yield losses result from reduced root growth, impaired
nutrient uptake, and cellular damage from the compounded toxicity of heavy metals.

Salinity Water salinity, often measured through Electrical Conductivity (EC), rep-
resents another significant mining-related pollutant that affects plant growth and
crop yields (Russ et al., 2020). Salinity stress impacts plants through osmotic effects
and nutrient imbalances (Parida and Das, 2005). At the cellular level, high salinity
disrupts membrane integrity, inhibits enzyme activity, and compromises plants’ ability
to detoxify. These physiological disruptions manifest as visible growth impairments.
Research shows that even a modest 1,000 𝜇S/cm (microsiemens per centimeter)
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increase in irrigation water EC can reduce biomass accumulation in maize by approxi-
mately 2%. The effect intensifies at higher salinity levels — when salinity increases
from moderate (3,000 𝜇S/cm) to high levels (6,000 𝜇S/cm), maize grain yields may
decline by 33%. Some studies indicate potential yield losses exceeding 50% when EC
values surpass 8,000 𝜇S/cm (Zörb, Geilfus, and Dietz, 2019), with varying impacts
by crop type (Page et al., 2021).

B2. Vegetation indices and crop yields

To translate our satellite-derived vegetation measurements to meaningful agricultural
impacts, we correlated our outcome with downscaled crop production statistics from
the Advancing Research on Nutrition and Agriculture (AReNA) Demographic and
Health Surveys (DHS)-GIS Database of the International Food Policy Research Institute
(IFPRI, 2020). This dataset contains information on yields and production values for
various crops at survey sites across 34 African countries, comprising approximately
45,000 observations collected between 2001 and 2018.

We focused on three key metrics: (1) physical yield (kg/hectare), (2) total pro-
duction value (USD), and (3) financial yield (USD/hectare). For each DHS cluster,
we created 6.2 km radius disks (matching our average basin size) and extracted the
maximum annual EVI for the survey year. We then related the logarithm of agricultural
metrics (winsorized at the 1% level) to this EVI value to determine semi-elasticities.

Table B1 reports these relationships. Our proxy of agricultural vegetation correlates
strongly with all agricultural production measures. A 0.1 unit increase in maximum
annual EVI is associated with: a 9.0% increase in cereal yields, a 5.6% increase in the
financial yield of cereal crops, a 24.9% increase in the value of cereal production, a
9.6% increase in the financial yield of all crops, and a 34.0% increase in the value of
overall crop production.

B2.1. Impact of mining on agricultural production

Using these correlations, we can translate our estimated mining impacts on vegetation
into quantifiable agricultural losses. Our analysis found a 0.0064–0.0068 unit decrease
in themaximum annual EVI on croplands for the three basins immediately downstream
of the mine basin (see Table 2), depending on the included set of covariates. Applying
the correlations from Table B1, this EVI reduction implies: a 0.57–0.61% decrease
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Table B1: Maximum annual EVI and agricultural production

Outcome: ln(Crops, Value) ln(Crops, FY) ln(Cereals, Value) ln(Cereals, Yield) ln(Cereals, FY)
Model: (1) (2) (3) (4) (5)

Variables
Max. Cropland EVI 3.398∗∗∗ 0.9519∗∗∗ 2.489∗∗∗ 0.8995∗∗∗ 0.5589∗∗

(0.4230) (0.1828) (0.9150) (0.1586) (0.2704)

Fixed effects
Wave Yes Yes Yes Yes Yes

Fit statistics
Observations 44,682 44,380 44,682 44,682 44,171
R2 0.65336 0.35656 0.50120 0.60944 0.32956
Within R2 0.08225 0.00717 0.02177 0.02195 0.00153

Clustered (wave) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

in cereal yields, a 0.36–0.38% decrease in the financial yield of cereal crops, a
1.59–1.70% decrease in the value of cereal production, a 0.61–0.65% decrease in the
financial yield of all crops and a 2.16–2.31% decrease in the value of overall crop
production.

To estimate the aggregate economic impact, we calculate the total physical pro-
duction loss. The total cropland area in the first three downstream basins amounts
to slightly more than 74,000 km2 (or 7.4 million hectares). The winsorized (1%
level) AReNA DHS-GIS data suggests an average yield of 2,000 kg/hectare, roughly
falling in line with FAO values. Coupled with our estimate, we reach a total annual
production loss of 91,100 tons of cereal (2,000 kg/hectare × 0.006 reduction × 7.4
million hectares).

Next, we quantify the aggregate loss in financial terms. Average values for finan-
cial yields from the winsorized (1% level) AReNA DHS-GIS dataset are around (i)
1,200 USD/hectare for cereal crops and (ii) around 2,100 USD/hectare for overall crop
production. Coupled with the average reductions in financial yields of 0.36–0.38%
for cereal crops and 0.61–0.65% for overall crop production, and the above area
for crop cultivation, we estimate total financial losses at roughly 34 million USD for
cereal crops (1,200 USD/hectare × 0.0038 reduction × 7.4 million) and roughly 102
million USD for overall crop production (2,100 USD/hectare × 0.0065 reduction ×
7.4 million).

Importantly, these estimated losses occur annually, persist over time, do not reflect
negative impacts of adaptation, only reflect water-mediated impacts on the immediate
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vicinity of mines, and affect some of the most destitute regions of the world. Water
pollution from mines can continue for decades after operations cease (Macklin et al.,
2023), and economic impacts accumulate over long periods.

B3. Water pollution measurements

To provide direct evidence for water pollution as the primary mechanism linking
mining to reduced agricultural productivity, we analyzed water quality measurements
from the United Nations Environment Programme (2025) database. This dataset
contains water samples voluntarily provided by countries and organizations from
their monitoring networks. We included all samples collected between 2016 and
2024 within our study region, though availability was limited to South Africa.29

Figure B3 presents six key water quality parameters measured in upstream, mine,
and downstream basins:

1. Calcium discharge (Ca-Dis) indicates increased mineral content in water.

2. Electrical conductivity (EC) measures salinity (dissolved salts and ions), which
inhibits plant growth.

3. Sodium discharge (Na-Dis) damages soil structure and impairs water uptake.

4. pH measures water acidity or alkalinity.

5. Sodium adsorption ratio (SAR) indicates the potential for soil structure deteri-
oration.

6. Sulfate discharge (SO2−
4 ) can cause acidification and indicates mining-related

pollution.

The data provide compelling evidence of water pollution in mine basins and down-
stream areas compared to upstream sites. Approximately 50% of samples from mine
basins exceed the 750 𝜇S/cm threshold for EC. Moreover, elevated median values
for electrical conductivity, calcium discharge, and sodium discharge in downstream
basins indicate that mining operations are driving an accumulation of dissolved salts.
Acidity levels (pH) remain relatively stable, although the elevated sodium absorption

29The availability of water quality data is a particular problem in Africa (Jones, Graham, et al., 2024).
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Figure B3: Water quality indicators for up-, mine, and downstream basins.

pH (n=3481) SAR (n=2642) SO4−Dis (n=2670) [mg/l]
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Notes: This figure presents key water quality parameters monitored across different basins in
South Africa between 2016-2024. Electrical conductivity (EC) estimates the overall dissolved
ionic content and measures water’s salinity. Sulfate discharge (SO4-DIS) can turn water acidic.
The pH values reflect the water’s degree of acidity or alkalinity. The sodium adsorption ratio
(SAR) assesses the potential for sodium to affect soil structure during irrigation. Dashed red
lines indicate levels that are potentially harmful for plant growth (Ayers and Westcot, 1985).
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ratio (SAR) reveals a risk for developing sodic soil conditions, and higher sulfate
concentrations downstream may indicate mining-induced acidification.

These water quality measurements, though limited in scope, align with our hypoth-
esis that water pollution is the primary mechanism through which mining operations
reduce agricultural productivity in downstream areas. Several limitations persist,
however: (a) measurements were only available from South Africa, covering a partic-
ular portion of our study area, (b) direct measurements of critical heavy metals (lead,
mercury, arsenic, cadmium) were unavailable, (c) temporal granularity is lacking, pro-
hibiting in-depth analysis that accounts for seasonal patterns, (d) measurements are
inconsistent and were collected using various methods, potentially limiting compara-
bility. Despite these limitations, the available data support our mechanism hypothesis
and demonstrate a clear pattern of elevated pollution levels in mine and downstream
basins compared to upstream control areas.

C. Additional Results and Methods

In this section, we report additional results that complement our main analysis.
First, we explore alternative specifications for extrapolating mining impacts beyond
the immediate vicinity, using exponential-decay and linear-quadratic distance-based
models. Second, we describe our approach to adding commodity information to
our dataset. Lastly, we detail additional robustness checks, including our matching
approach, treatment randomization, and placebo outcomes.

C1. Distance-based specifications

Our main analysis uses the basin order to estimate mining impacts on vegetation. Here,
we complement this approach with distance-based specifications to help quantify how
impacts develop over the course of rivers.

C1.1. Exponential decay model

The transport of pollutants from mining operations via rivers is the primary transmis-
sion channel to downstream basins. Hydrological studies indicate that over 90% of
pollutants from mining are sediment-associated and transported 10–100 kilometers
from their discharge point (see Macklin et al., 2023). Theory and empirical evidence
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(see, inter alia, references in Macklin et al., 2023) suggest that concentrations decay
non-linearly.

We therefore employ an exponential decay model, described in the main text, to
characterize impact patterns over longer distances. Note, however, that our original
research design is focused on the immediate vicinity. At greater distances, up- and
downstream basins are no longer directly comparable as structural differences mount;
hence, estimates from this analysis cannot be interpreted as causal under the same
weak conditions as our main results.

Since the decay parameters 𝛿, 𝛾 are not known a priori, we use a (Bayesian)
model-averaging approach to (i) estimate their values while (ii) conveying uncertainty
around them. We consider a grid of values between [0.001, 1] , accommodating rapid
and slow decay patterns at either side of the cutoff. At the lower (higher) bound, the
exponential decay acts along meters (kilometer) of river distance. For each combi-
nation 𝑗 of decay parameters, we estimate the model(s) and compute the Bayesian
information criterion (BIC) to quantify model fit. We approximate posterior proba-
bilities for each model via 𝑝(𝛿𝑗, 𝛾𝑗 ∣ 𝒟) = exp{−BIC𝑗/2}/∑𝑗 exp{−BIC𝑗/2} (see e.g.
Neath and Cavanaugh, 2012) and a prior. Instead of imposing a flat prior for the
decay parameters, we use a moderately informative on, with 𝛿𝑗, 𝛾𝑗 ∼ Be (5.6, 1.4).
This implies that impacts decay quickly (at a mean value of 0.8), and represents a
conservative prior for our analysis. This procedure allows us to report posterior means
(corresponding to regularized maximum likelihood estimates) and use the posterior
distribution of parameters to express uncertainty around them.

Our results are available in the lower panel of Table E12, and reveal surprisingly slow
rates of decay. Initial impacts (at hypothetical zero distance) range from −0.0060 to
−0.0093, while the average decay parameters range from 0.035 to 0.002, suggesting
very slow rates of decay. A re-analysis with flat priors (mirroring maximum likelihood
estimates) diverges towards a flat downstream indicator, with estimates tending
towards zero. Figure C4 visualizes the speed of decay along the river network for the
fully saturated specifications. Posterior means indicate that impacts on vegetation
halve at a distance of 281 km, while cropland impacts halve at 72 km. This implies
minimal decay over the sample, where non-mine basins lie at a mean (median) river
distance of 51.5 (45.8) km, with a maximum of 216 km. These impact ranges reach
beyond typical detection ranges of pollutants from hydrological studies (see, e.g.,
Macklin et al., 2023).
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Figure C4: Impact decay over the river distance, assuming an exponential decay function.
The solid black line denotes the mean effect; the shaded area between the dotted (dashed)
lines denotes the 95% (80%) credible interval. The vertical lines denote the distance where
the average impact is reduced to 50% and 10%.

C1.2. Linear-quadratic distance specifications

In addition to the exponential decay model, we also employ polynomial specifications
using river distance in kilometers as the running variable. These specifications use
the following operationalization of the running distance:

𝐹(𝑥) = (|𝑥| + 𝑥2) × 𝕀 (𝑥 < 0) + 𝕀 (𝑥 = 0) + (1 + 𝑥 + 𝑥2) × 𝕀 (𝑥 > 0) ,

where 𝑥 denotes the river distance relative to the mine, and we consider polynomials
up to order two (avoiding issues discussed in Gelman and Imbens, 2019).

Overall, we detect a negative effect of being downstream to a mine across these
specifications. Results are reported in Table E12. The linear distance decay speci-
fication indicates that downstream basins have a −0.0034 to −0.005 lower annual
maximum EVI, though not all estimates are statistically significant. For the quadratic
specification, we find statistically significant effects across all models, with down-
stream coefficients ranging from −0.0050 to −0.0056 for the general vegetation EVI
and from −0.072 and −0.0077 for the cropland-specific EVI. All estimates are sig-
nificant at the 5% level. These magnitudes closely align with our main basin-order
specification for basins near the discontinuity.

Robustness of linear-quadratic distances We also investigate the robustness of
the linear-quadratic specifications, although we note that distance-based polyno-
mials poorly fit the impact of interest and should be interpreted with care. Most
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notably, this concerns the choice of bandwidth around the cutoff, which limits the
influence of distant observations and is natively addressed by our chosen order and
exponential specifications. Here, we follow the recent literature on inference in
regression-discontinuity designs with continuous running variables (see Cattaneo,
Idrobo, and Titiunik, 2019). We use a data-driven bandwidth selection procedure, a
weighting scheme for observations that are closer to the cutoff, and separately fitted
local polynomials for untreated and treated units (following Imbens and Kalyanara-
man, 2012).30 We follow the set of practices as outlined by Cattaneo, Idrobo, and
Titiunik (2019) and employ a triangular kernel, which gives observations closer to the
cutoff a greater weight, and chose the bandwidth by minimizing the mean squared
prediction error.

The results of this exercise are presented in Table E13. For the conventional
estimates, the optimal bandwidth ranges from 18.4 to 41.9 km across specifica-
tions. The bias-corrected estimates use wider bandwidths between 42.1 and 78.5 km.
These bandwidths align with hydrological studies showing elevated toxic pollutants
10–80 km downstream of mines.31 Despite the narrower bandwidths than for our
main specification, the estimated effects remain consistent. With full controls, the
local average treatment effects range from −0.0028 to −0.0061 for general vegeta-
tion and from −0.0045 to −0.0083 for cropland vegetation. These estimates remain
statistically significant after bias correction.

C2. Commodity type prediction

The environmental impacts of mining vary by the type of mineral being extracted, as
different commodities require distinct extraction processes, chemicals, and produce
different waste profiles. To investigate this heterogeneity, we developed a methodical
approach to extend our dataset with information on commodity types present.

First, we compiled commodity information for relevant mine sites from multiple
sources: the SNL Mines and Metals database, the Global Energy Monitor database,
data by the US Geological Survey (Padilla et al., 2021), and company reports (Jasansky
et al., 2023). After collection, we standardize commodity classifications across sources

30Note that our main specification includes observations up to the order 10. We implicitly employ a
uniform kernel (weighing all observations equally), but separately estimate local treatment effects
for treated and untreated units at each order.

31Macklin et al. (2023), e.g., find elevated levels of toxic pollutants like zinc, lead, and arsenic between
10 and 80 km downstream of mines.
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by harmonizing different naming conventions and variants of the same minerals. Then,
we use Gaussian process regression with a Gaussian kernel to predict commodity
probabilities for mine sites based on their coordinates. This allows us to predict the
probabilities of different commodity types occurring at each mine location in our
dataset.

Figure D8 illustrates the predicted spatial distribution of four common commodities
(gold, copper, coal, and diamonds) across our study area. While the visualization
shows broad patterns, the actual predictions operate at the much finer spatial scale
of our training data, allowing us to differentiate between neighboring mining sites.
However, commodities often co-occur and their environmental impacts may interact in
complex ways, we focus our heterogeneity analysis on these four major commodities
that we can isolate in mine basins. This allows us to investigate commodity-specific
effects in a straightforward way, leaving extensions to future research.

C3. Further robustness checks

This section describes and details robustness checks conducted to validate our main
findings. We employed three approaches — matching methods to achieve covariate
balance, randomization of treatment assignment, and placebo outcome tests. These
checks strengthen confidence in the causal impacts of mining operations and reduced
vegetation health downstream.

C3.1. Balance and matching

The characteristics of river basins may differ systematically between upstream (control)
and downstream (treatment) basins. Potential imbalances are likely related to the
nature of basins and river streams, with elevation and its correlates playing a central
role (see Appendix A for more details). Our research design is not invalidated by
such imbalances, but would suffer from decreased precision and higher dependence
on exact model specifications. To counteract this, we use coarsened exact matching
(Iacus, King, and Porro, 2012) to achieve covariate balance among groups in a flexible
non-parametric fashion.

We implement two matching strategies with increasing stringency. First, we
matched solely on elevation and slope — the characteristics that are most closely
related to basin systems. The upper panels of Figure D11 show an imbalance of these
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covariates in the unadjusted sample, which is purged by the matching procedure.
Second, we expanded our matching criteria to include meteorological conditions
(rainfall and maximum temperature) and soil type. The lower panels of Figure D11
show that the pre-matching imbalances in temperature and rainfall were effectively
eliminated in the adjusted sample. Figure D12 shows negligible absolute standardized
mean differences, confirming the success of the matching procedure.

Using the weights derived from these matching procedure, we re-estimate the
treatment effect for the first three downstream basins. Results are reported in Figure 6
and columns (7) and (8) of Table E10. Both matching approaches yield estimates
that are qualitatively similar to our main results, confirming the negative effect of
mining on vegetation health and agricultural productivity. The effects were somewhat
stronger when matching on the full set of covariates, though not statistically different
from our main results.

C3.2. Randomized treatment

To further validate our identification strategy, we conducted a randomization exercise
by shuffling the treatment status of basins. We randomly reassigned the downstream
status of basins by changing the sign of the running variable, maintaining the overall
balance between upstream and downstream locations. We preserve the status of the
mine basin, which is not identified by our procedure and causally interpreted by us.

Figure D10 presents results from 5,000 iterations of this randomization procedure.
For the first three downstream basins, the estimated coefficients are centered near zero
for both outcomes, with and without covariates. Our point estimates from the main
analysis, indicated by red crosses, fall well outside these randomized distributions.
This randomization exercise suggests that our findings are not artifacts of random
variation but reflect genuine treatment effects.

C3.3. Placebo outcomes

In another validation exercise, we examined whether discontinuities exist at the mine
basin for variables that should not be directly affected by mining’s water-mediated
impacts. Figure D9 shows results from estimating our main specification using each
of the main covariates as an outcome variable.
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Population and temperature show no statistically significant discontinuities at the
mine basin. Slope and elevation exhibit expected systematic trends moving from
upstream to downstream areas (consistent with the nature of basins) but display no
apparent discontinuity at the mine location. Accessibility to cities follows a U-shaped
pattern, indicating that mines tend to be situated closer to population centers, which is
also reflected in the population spike for mine basins. None of the covariates displays
the distinctive pattern observed for vegetation in our main analysis.

We also conduct this exercise with river distances as running variables, and find
similar results that are reported in Table E14. We find no statistically significant dis-
continuities for slope, temperature, precipitation, or accessibility. We find moderate
discontinuities for population, for which the estimate is only significant at the 10%
level, and for elevation. The former might suggest migration as a relevant type of
adaptation, while the latter is expected due to the nature of our basin-level dataset.
Coupled with the qualitatively unchanged estimates when accounting for these co-
variates (in various ways), this validation exercise soothes concerns of confounding at
the mine basin.
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D. Additional Figures

Figure D5: Maximum 2023 monthly temperature per basin in degrees Celsius (top-left), 2023 accumulated
precipitation per basin in millimeters (top-right), average elevation in meters per basin (bottom-left), and average
slope in degrees per basin (bottom-right). Basemap imagery provided by Esri, Maxar, Earthstar Geographics, and
the GIS User Community.
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Figure D6: Maximum 2023 EVI per basin after applying the CCI vegetation mask (left) and the CCI cropland
mask (right). Basemap imagery provided by Esri, Maxar, Earthstar Geographics, and the GIS User Community.
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Figure D7: Number of mine-basins with 𝑌 upstream and 𝑋 downstream basins in the dataset.

Figure D8: Heatmap indicating the results of the commodity prediction and point locations of training data.
Note that the zoomed-out level of the heatmap averages over local nuances and does not accurately convey results
for individual mines.
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Figure D9: Order estimates when using elevation, slope, temperature, precipitation, accessibility to cities, and
population as placebo outcomes.
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Figure D10: Estimation results when the treatment status (i.e., whether basins are down- or upstream) is
randomized (5,000 runs, balance between statuses is kept). The red crosses indicate estimation results for the
main specification.
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Figure D11: Balance of elevation, slope, temperature, and precipitation before and after matching. (Soilgrids
not pictured.)
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E. Additional Tables

Table E2: Number and average distance (km) of basins by order.

Order Upstream Downstream
𝑁 Distance 𝑁 Distance

0 (1900) (0.0) (1900) (0.0)
1 847 13.9 1162 11.1
2 781 24.5 882 22.0
3 722 35.0 743 32.7
4 698 44.9 643 43.3
5 653 55.3 578 54.0
6 576 66.3 512 64.3
7 562 75.8 458 74.1
8 522 86.5 416 84.4
9 494 95.8 382 95.0

10 452 104.2 351 104.7
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Table E3: Summary statistics split by status.
Upstream Basins

Variable Unit of Measurement 𝑁𝑇 Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 48,666 0.433 0.156 0.028 0.983
Mean Vegetation EVI Index [−1, 1] 48,666 0.285 0.114 0.016 0.578
Max. Cropland EVI Index [−1, 1] 41,820 0.465 0.136 0.070 0.978
Mean Cropland EVI Index [−1, 1] 41,820 0.300 0.104 0.030 0.601
Elevation Meters 48,666 862.441 472.216 10.526 3,059.727
Slope Degrees 48,666 2.321 2.272 0.086 20.913
Max. Temperature Degree Celsius 48,666 34.194 3.958 15.633 46.146
Precipitation Millimeter 48,666 923.300 588.526 5.744 3,625.230
Population Unit 48,666 7,018.943 29,066.720 0.000 1,396,921.000
Accessibility Minutes 48,666 176.564 194.345 3.474 2,197.584

Mine Basins
Variable Unit of Measurement 𝑁𝑇 Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 14,730 0.431 0.151 0.039 0.917
Mean Vegetation EVI Index [−1, 1] 14,730 0.281 0.112 0.034 0.563
Max. Cropland EVI Index [−1, 1] 13,089 0.468 0.129 0.072 0.917
Mean Cropland EVI Index [−1, 1] 13,089 0.299 0.103 0.059 0.568
Elevation Meters 14,730 873.544 527.752 10.217 3,047.148
Slope Degrees 14,730 2.325 2.195 0.018 20.456
Max. Temperature Degree Celsius 14,726 33.357 3.904 15.592 46.525
Precipitation Millimeter 14,730 919.593 594.956 0.640 4,204.642
Population Unit 14,730 21,797.630 78,642.490 0.000 1,244,492.000
Accessibility Minutes 14,706 117.981 124.096 1.739 1,271.511

Downstream Basins
Variable Unit of Measurement 𝑁𝑇 Mean St. Dev. Min. Max.

Max. Vegetation EVI Index [−1, 1] 47,180 0.422 0.153 0.016 0.993
Mean Vegetation EVI Index [−1, 1] 47,180 0.273 0.108 −0.021 0.559
Max. Cropland EVI Index [−1, 1] 38,127 0.461 0.130 −0.068 0.958
Mean Cropland EVI Index [−1, 1] 38,127 0.294 0.098 −0.104 0.597
Elevation Meters 47,172 760.527 468.287 −118.349 2,949.539
Slope Degrees 47,172 2.123 2.446 0.000 19.798
Max. Temperature Degree Celsius 47,180 34.709 3.875 16.590 48.845
Precipitation Millimeter 47,180 874.144 601.039 3.149 4,456.690
Population Unit 47,180 5,808.941 21,609.500 0.000 667,053.000
Accessibility Minutes 47,156 166.076 174.843 1.002 2,659.925
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E1. Main results

Table E4: Main estimation results, order specification.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Mine Basin -0.0049∗∗∗ -0.0053∗∗∗ -0.0048∗∗∗ -0.0046∗∗∗ -0.0068∗∗∗ -0.0073∗∗∗ -0.0070∗∗∗ -0.0064∗∗∗
(0.0014) (0.0014) (0.0014) (0.0014) (0.0022) (0.0022) (0.0022) (0.0022)

Downstream, 1 -0.0045∗∗∗ -0.0047∗∗∗ -0.0041∗∗ -0.0043∗∗ -0.0051∗∗ -0.0051∗∗ -0.0049∗∗ -0.0050∗∗
(0.0017) (0.0018) (0.0018) (0.0018) (0.0025) (0.0025) (0.0025) (0.0025)

Downstream, 2 -0.0049∗∗ -0.0048∗∗ -0.0045∗ -0.0048∗∗ -0.0058∗ -0.0061∗ -0.0064∗ -0.0067∗∗
(0.0022) (0.0024) (0.0024) (0.0024) (0.0031) (0.0032) (0.0032) (0.0032)

Downstream, 3 -0.0085∗∗∗ -0.0086∗∗∗ -0.0087∗∗∗ -0.0087∗∗∗ -0.0088∗∗ -0.0092∗∗ -0.0098∗∗ -0.0099∗∗∗
(0.0028) (0.0029) (0.0029) (0.0029) (0.0037) (0.0038) (0.0038) (0.0038)

Downstream, 4 -0.0049∗ -0.0057∗ -0.0061∗ -0.0062∗ -0.0029 -0.0034 -0.0042 -0.0044
(0.0030) (0.0032) (0.0033) (0.0033) (0.0038) (0.0039) (0.0039) (0.0040)

Downstream, 5 -0.0034 -0.0043 -0.0053 -0.0053 0.0007 0.0003 -0.0015 -0.0016
(0.0033) (0.0036) (0.0037) (0.0037) (0.0042) (0.0044) (0.0045) (0.0045)

Downstream, 6 -0.0027 -0.0040 -0.0057 -0.0061 -0.0004 -0.0010 -0.0035 -0.0038
(0.0034) (0.0039) (0.0040) (0.0040) (0.0046) (0.0051) (0.0052) (0.0052)

Downstream, 7 -0.0053 -0.0061 -0.0087∗∗ -0.0089∗∗ -0.0051 -0.0057 -0.0092∗ -0.0093∗
(0.0037) (0.0042) (0.0043) (0.0043) (0.0048) (0.0054) (0.0055) (0.0055)

Downstream, 8 -0.0095∗∗ -0.0115∗∗ -0.0141∗∗∗ -0.0144∗∗∗ -0.0047 -0.0056 -0.0085 -0.0088
(0.0041) (0.0045) (0.0046) (0.0046) (0.0053) (0.0059) (0.0060) (0.0060)

Downstream, 9 -0.0066 -0.0089∗ -0.0120∗∗ -0.0123∗∗ -0.0060 -0.0070 -0.0108∗ -0.0111∗
(0.0045) (0.0049) (0.0050) (0.0050) (0.0056) (0.0063) (0.0064) (0.0064)

Downstream, 10 -0.0063 -0.0083 -0.0118∗∗ -0.0120∗∗ -0.0023 -0.0030 -0.0071 -0.0074
(0.0049) (0.0053) (0.0054) (0.0054) (0.0060) (0.0068) (0.0069) (0.0069)

Elevation −1.36 × 10−5∗∗ −5.04 × 10−5∗∗∗ −5.04 × 10−5∗∗∗ −9.82 × 10−6 −4.93 × 10−5∗∗∗ −4.93 × 10−5∗∗∗

(6.33 × 10−6) (6.85 × 10−6) (6.85 × 10−6) (7.7 × 10−6) (7.88 × 10−6) (7.9 × 10−6)
Slope 0.0029∗∗∗ 0.0024∗∗∗ 0.0025∗∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0005) (0.0005) (0.0005) (0.0006) (0.0007) (0.0006)
Soil Type included Yes Yes Yes Yes Yes Yes
Yearly Max. Temperature -0.0064∗∗∗ -0.0064∗∗∗ -0.0066∗∗∗ -0.0067∗∗∗

(0.0006) (0.0006) (0.0007) (0.0007)
Yearly Precipitation 3.69 × 10−5∗∗∗ 3.69 × 10−5∗∗∗ 3.3 × 10−5∗∗∗ 3.3 × 10−5∗∗∗

(3.23 × 10−6) (3.21 × 10−6) (3.44 × 10−6) (3.44 × 10−6)
Accessibility in 2015 −1.44 × 10−5∗∗ 1.12 × 10−5

(7.17 × 10−6) (1.76 × 10−5)
Population in 2015 −7.78 × 10−8∗∗∗ −6.85 × 10−8∗∗∗

(1.93 × 10−8) (2.33 × 10−8)

Sample Mean (Order 1) 0.4259 0.4259 0.4259 0.4259 0.4647 0.4647 0.4647 0.4647
Relative Effect (Order 1) -1.056 -1.098 -0.9731 -1.008 -1.093 -1.098 -1.063 -1.066

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90287 0.90457 0.90767 0.90788 0.81624 0.81763 0.82152 0.82179
Within R2 0.00175 0.01894 0.05094 0.05285 0.00216 0.00973 0.03121 0.03245

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin. Columns (1)–(4) hold results from models for the overall EVI as proxy measure for vegetative health within basins, columns
(5)–(8) for the cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (5) include no additional
covariates, models (2) and (6) control for geophysical variables (elevation, slope, and soil), models (3) and (7) additionally control for
meteorological (yearly sum of precipitation and yearly maximum temperature), and models (4) and (8) additionally control for
socioeconomic (accessibility to city in minutes and total population in 2015) conditions. All models include mine and year fixed effects.
Standard errors are clustered at the mine basin system level.

xxvi



Mines → Rivers → Yields

Table E5: Main estimation results, pooled order specification.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Mine Basin -0.0053∗∗∗ -0.0057∗∗∗ -0.0054∗∗∗ -0.0051∗∗∗ -0.0079∗∗∗ -0.0084∗∗∗ -0.0083∗∗∗ -0.0076∗∗∗
(0.0015) (0.0015) (0.0015) (0.0015) (0.0022) (0.0022) (0.0022) (0.0022)

Downstream, 1–3 -0.0057∗∗∗ -0.0057∗∗∗ -0.0054∗∗∗ -0.0056∗∗∗ -0.0064∗∗ -0.0065∗∗ -0.0067∗∗∗ -0.0068∗∗∗
(0.0018) (0.0020) (0.0020) (0.0020) (0.0025) (0.0026) (0.0026) (0.0026)

Elevation −1.31 × 10−5∗∗ −4.97 × 10−5∗∗∗ −4.97 × 10−5∗∗∗ −9.24 × 10−6 −4.86 × 10−5∗∗∗ −4.85 × 10−5∗∗∗

(6.26 × 10−6) (6.78 × 10−6) (6.79 × 10−6) (7.63 × 10−6) (7.8 × 10−6) (7.81 × 10−6)
Slope 0.0029∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0005) (0.0005) (0.0005) (0.0006) (0.0007) (0.0006)
Soil Type included Yes Yes Yes Yes Yes Yes
Yearly Max. Temperature -0.0064∗∗∗ -0.0064∗∗∗ -0.0066∗∗∗ -0.0067∗∗∗

(0.0006) (0.0006) (0.0007) (0.0007)
Yearly Precipitation 3.69 × 10−5∗∗∗ 3.69 × 10−5∗∗∗ 3.29 × 10−5∗∗∗ 3.29 × 10−5∗∗∗

(3.23 × 10−6) (3.22 × 10−6) (3.45 × 10−6) (3.45 × 10−6)
Accessibility in 2015 −1.45 × 10−5∗∗ 1.12 × 10−5

(7.12 × 10−6) (1.75 × 10−5)
Population in 2015 −7.8 × 10−8∗∗∗ −6.89 × 10−8∗∗∗

(1.93 × 10−8) (2.33 × 10−8)

Sample Mean (Order 1–3) 0.4234 0.4234 0.4234 0.4234 0.4623 0.4623 0.4623 0.4623
Relative Effect (Order 1–3) -1.348 -1.348 -1.283 -1.319 -1.378 -1.410 -1.447 -1.473

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90286 0.90456 0.90765 0.90787 0.81622 0.81761 0.82150 0.82177
Within R2 0.00163 0.01882 0.05080 0.05272 0.00208 0.00964 0.03109 0.03234

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns (1)–(4) hold results from models
for the overall EVI as proxy measure for vegetative health within basins, columns (5)–(8) for the cropland-specific EVI as proxy measure for
agricultural productivity. Models in columns (1) and (5) include no additional covariates, models (2) and (6) control for geophysical variables
(elevation, slope, and soil), models (3) and (7) additionally control for meteorological (yearly sum of precipitation and yearly maximum
temperature), and models (4) and (8) additionally control for socioeconomic (accessibility to city in minutes and total population in 2015)
conditions. All models include mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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E2. Heterogeneity analysis

Table E6: Estimation results for heterogeneity analysis: Mine characteristics

Mine Size > 0.5𝑘𝑚2 > 1𝑘𝑚2 > 2.5𝑘𝑚2

Mine Growth > 0% > 10% > 25%
Mine Commodity Coal Copper Diamonds Gold

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ -0.0062∗∗∗ -0.0069∗∗∗ -0.0073∗∗ -0.0051∗∗ -0.0048∗∗ -0.0040 -0.0052 -0.0078 -0.0074∗ -0.0080∗∗∗

(0.0020) (0.0024) (0.0026) (0.0033) (0.0022) (0.0023) (0.0024) (0.0060) (0.0055) (0.0045) (0.0030)

Fit statistics
Observations 110,524 55,627 43,787 28,265 74,180 69,644 60,396 9,096 6,496 14,596 29,087
R2 0.90787 0.91447 0.91335 0.91718 0.89661 0.89568 0.89697 0.77295 0.90098 0.93217 0.87340
Within R2 0.05272 0.05421 0.05831 0.06647 0.05456 0.05365 0.04939 0.10382 0.09247 0.11833 0.03965

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ -0.0046 -0.0064 -0.0035 -0.0074∗∗∗ -0.0059∗∗ -0.0066∗∗ 0.0095 0.0015 -0.0127 -0.0119∗∗∗

(0.0026) (0.0036) (0.0041) (0.0054) (0.0027) (0.0027) (0.0030) (0.0091) (0.0080) (0.0090) (0.0042)

Fit statistics
Observations 93,000 48,325 38,247 24,391 63,329 59,266 51,873 8,252 5,138 11,081 27,375
R2 0.82177 0.84026 0.84698 0.84604 0.79461 0.79109 0.79097 0.67233 0.83484 0.76409 0.82100
Within R2 0.03234 0.03432 0.03980 0.05264 0.03433 0.03215 0.03298 0.07971 0.07025 0.04274 0.04576

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin, with the overall EVI as outcome in the upper panel and the cropland-specific EVI as outcome in the lower panel. Model in column
(1) reports results for the baseline specification, models in columns (2)–(4) for subsets of mine basins with increasing total area of mined area,
models in columns (5)–(7) for subsets of mine basins with increasing growth in mined area in the period from 2017 to 2023 based on Sepin,
Vashold, and Kuschnig, 2025. Models (8)–(11) report results for subsets of mines split by the primary commodity mined within them, not
considering by-products. All specifications include the full set of controls and mine and year fixed effects. Standard errors are clustered at the
mine basin system level.

Table E7: Estimation results for heterogeneity analysis: Spatial heterogeneity

Biome Deserts Forests Grasslands
Region N. & E. Africa S. Africa W. Africa
Crop Suitability High Medium Low
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ 0.0020 -0.0105∗∗ -0.0055∗∗ -0.0059 -0.0020 -0.0097∗∗ -0.0066∗∗ -0.0044 -0.0022

(0.0020) (0.0041) (0.0048) (0.0023) (0.0061) (0.0025) (0.0039) (0.0028) (0.0030) (0.0043)

Fit statistics
Observations 110,524 16,988 16,838 76,698 10,104 71,481 28,939 39,232 47,088 24,204
R2 0.90787 0.85191 0.92357 0.82853 0.91358 0.89851 0.89497 0.77085 0.84687 0.87793
Within R2 0.05272 0.09738 0.07345 0.05223 0.09214 0.05905 0.03862 0.03421 0.06666 0.09580

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ 0.0159 -0.0088∗∗ -0.0072∗∗ -0.0038 -0.0014 -0.0115∗∗ -0.0088∗∗∗ -0.0046 0.0015

(0.0026) (0.0133) (0.0044) (0.0029) (0.0064) (0.0035) (0.0046) (0.0033) (0.0038) (0.0119)

Fit statistics
Observations 93,000 7,856 15,885 69,259 9,028 56,946 27,026 36,611 43,628 12,761
R2 0.82177 0.70207 0.91138 0.73855 0.89173 0.75552 0.82927 0.72121 0.80964 0.79248
Within R2 0.03234 0.08679 0.05972 0.03288 0.07170 0.03574 0.02975 0.02746 0.04722 0.05867

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin, with the overall EVI as outcome in the upper panel and the cropland-specific EVI as outcome in the lower panel. Model in column
(1) reports results for the full sample, models in columns (2)–(4) for sample splits by primary biome of mine basin system, and models in
columns (5)–(7) for sample splits by regions based on the USDA crop classifications, models in columns (8)–(11) for sample splits by crop
suitability based on the GAEZ methodology. All specifications include the full set of controls and mine and year fixed effects. Standard errors
are clustered at the mine basin system level.
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E3. Robustness analysis

Table E8: Estimation results for alternative/additional controls

Dependent Variables: Maximum Vegetation EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0061∗∗∗ -0.0056∗∗∗ -0.0056∗∗∗ -0.0053∗∗∗ -0.0068∗∗∗ -0.0073∗∗∗ -0.0066∗∗ -0.0067∗∗∗ -0.0065∗∗

(0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0026) (0.0026) (0.0026) (0.0026) (0.0026)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,524 110,528 96,702 110,524 110,524 93,000 93,004 81,324 93,000 93,000
R2 0.90787 0.90670 0.90691 0.90787 0.90806 0.82177 0.82060 0.82156 0.82182 0.82187
Within R2 0.05272 0.04056 0.05345 0.05272 0.05476 0.03234 0.02565 0.03443 0.03260 0.03287

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns (1)–(5) hold results from models
for the vegetation EVI as proxy measure for vegetative health within basins, columns (6)–(10) for the cropland-specific EVI as proxy measure
for agricultural productivity. Models in columns (1) and (6) are the baseline specification, models in columns (2) and (7) use alternative
meteorological variables from the Climatic Research Unit Harris et al., 2020 for precipitation and maximum temperature, models in columns
(3) and (8) include an additional control for yearly average concentrations of particulate matter with a diameter of 2.5𝜇𝑔 within basins taken
from Shen et al., 2024, models in columns (4) and (9) include an additional control for violent events within basins taken from Raleigh et al.
(2010), models in columns (5) and (10) include an additional control for distance to coast. All specifications include the full set of controls
and mine and year fixed effects. Standard errors are clustered at the mine basin system level.

Table E9: Estimation results for varying outcome variables

Dependent Variables: Vegetation Croplands
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0057∗∗ -0.0048∗∗ -0.0046∗∗ -0.0032∗∗ -0.0068∗∗∗ -0.0058∗∗ -0.0053∗∗ -0.0058∗∗ -0.0037∗∗

(0.0020) (0.0023) (0.0020) (0.0021) (0.0013) (0.0026) (0.0028) (0.0027) (0.0028) (0.0016)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 110,524 110,524 109,505 110,500 110,524 93,000 93,000 94,596 92,719 93,000
R2 0.90787 0.93543 0.90344 0.91885 0.95522 0.82177 0.86923 0.78699 0.82381 0.91360
Within R2 0.05272 0.08588 0.05400 0.06762 0.14092 0.03234 0.05135 0.03110 0.03510 0.08378

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns (1)–(5) hold results from models
for vegetation-specific measures as proxy measure for vegetative health within basins, columns (6)–(10) for cropland-specific ones as proxy
measure for agricultural productivity. Models in columns (1) and (5) are the baseline specification for the overall maximum EVI and the
cropland-specific maximum EVI, respectively. Models in columns (2) and (7) use the respective NDVI instead of the EVI, models in columns
(3) and (8) report results for a narrower version of the vegetation mask by ESA (Defourny et al., 2024) and a cropland mask by Digital Earth
Africa, 2022, respectively. Models in columns (4) and (9) use the average of the pixel-specific annual maximum EVI per basin, models in
columns (5) and (10) use the yearly mean of the EVI as outcome instead of the maximum. All specifications include the full set of controls
and mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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Table E10: Estimation results for varying sample definition

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Maximum Vegetation EVI
Downstream, 1–3 -0.0056∗∗∗ -0.0061∗∗∗ -0.0061∗∗∗ -0.0043∗ -0.0045∗∗ -0.0055∗∗ -0.0046∗ -0.0071∗∗∗

(0.0020) (0.0020) (0.0021) (0.0022) (0.0023) (0.0023) (0.0024) (0.0024)

Fit statistics
Observations 110,524 69,107 41,449 58,545 95,822 8,152 94,902 72,009
R2 0.90787 0.91075 0.92199 0.89783 0.90765 0.92270 0.90891 0.90252
Within R2 0.05272 0.04812 0.04801 0.05360 0.05214 0.06617 0.05269 0.05244

Maximum Cropland EVI
Downstream, 1–3 -0.0068∗∗∗ -0.0071∗∗∗ -0.0068∗∗ -0.0067∗∗ -0.0067∗∗ -0.0071∗∗ -0.0067∗∗ -0.0092∗∗∗

(0.0026) (0.0027) (0.0027) (0.0029) (0.0029) (0.0034) (0.0030) (0.0032)

Fit statistics
Observations 93,000 58,288 34,883 49,798 79,931 6,967 79,123 60,357
R2 0.82177 0.82521 0.83763 0.80996 0.82360 0.86559 0.82186 0.81508
Within R2 0.03234 0.02663 0.02700 0.03324 0.03211 0.06258 0.03282 0.03575

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. The upper panel holds results from models
for the vegetation-specific EVI as proxy measure for vegetative health within basins, the lower panel for the cropland-specific EVI as proxy
measure for agricultural productivity. Models in column (1) are the baseline specifications, models in columns (2) restrict the sample to data
from 2019 and onwards, models in column (3) restrict the sample to data from the period 2018 to 2020. Models in column (4) only include
basin systems with at least one up- and downstream basin, models in column (5) exclude the mine basin itself, models in column (6) include
only basins of order ±1 of mine-basin systems with at least one up- and downstream basin and exclude the mine-basin. Models in columns
(7) and (8) report results from matching procedures. Models in column (7) matches on geophysical variables (elevation, slope, and soil),
models in column (8) in addition matches on meteorological variables (precipitation and maximum temperature) and soil type. All
specifications include the full set of controls and mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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Table E11: Estimation results for varying fixed effects

Dependent Variables: Maximum Vegetation EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream, 1–3 -0.0056∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗ -0.0057∗∗∗ -0.0056∗∗∗ -0.0068∗∗∗ -0.0059∗∗ -0.0071∗∗∗ -0.0067∗∗∗ -0.0067∗∗∗

(0.0020) (0.0018) (0.0017) (0.0020) (0.0020) (0.0026) (0.0024) (0.0022) (0.0026) (0.0026)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes
Pfafstetter basin level 8 Yes Yes
Pfafstetter basin level 6 Yes Yes
Country-by-year Yes Yes
Mine-specific time trends Yes Yes

Fit statistics
Observations 110,524 110,524 110,524 110,524 110,524 93,000 93,000 93,000 93,000 93,000
R2 0.90787 0.90277 0.88482 0.91812 0.91341 0.82177 0.80802 0.78259 0.83552 0.82970
Within R2 0.05272 0.05884 0.06696 0.03154 0.10975 0.03234 0.03504 0.05020 0.01668 0.07542

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note:Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin and pooled for the first three basins immediately up- or downstream of the mine basin. Columns (1)–(5) hold results from models
for the vegetation-specific EVI as proxy measure for vegetative health within basins, columns (6)–(10) for the cropland-specific EVI as proxy
measure for agricultural productivity. Models in columns (1) and (6) are the baseline specification with mine fixed effects. Models in columns
(2) and (7) use fixed effects at Pfafstetter level 8 basins, models in columns (3) and (8) fixed effects at Pfafstetter level 6 basins. Models in
columns (4) and (9) report results using country-by-year fixed effects, models in columns (5) and (10) report results including mine-specific
linear time trends. All specifications include the full set of controls. Standard errors are clustered at the mine basin system level.
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E4. Distance-based specifications

Table E12: Main estimation results specification using distance as running variable.

Dependent Variables: Maximum Vegetation EVI Maximum Croplands EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Linear distance

Downstream -0.0050∗∗ -0.0045∗∗ -0.0033 -0.0034 -0.0050∗ -0.0049∗ -0.0041 -0.0042
(0.0023) (0.0022) (0.0022) (0.0022) (0.0029) (0.0029) (0.0029) (0.0029)

Downstream × Distance −7.57 × 10−6 −3.59 × 10−5 −8.32 × 10−5 −8.47 × 10−5 1.47 × 10−5 −4.19 × 10−6 −5.85 × 10−5 −5.96 × 10−5

(4.69 × 10−5) (5.36 × 10−5) (5.38 × 10−5) (5.32 × 10−5) (5.85 × 10−5) (6.91 × 10−5) (6.96 × 10−5) (6.94 × 10−5)
Distance 7.75 × 10−6 3.26 × 10−5 5.61 × 10−5 6.18 × 10−5 2.75 × 10−5 4.08 × 10−5 6.32 × 10−5 5.66 × 10−5

(3.91 × 10−5) (4.13 × 10−5) (4.12 × 10−5) (4.04 × 10−5) (4.97 × 10−5) (5.45 × 10−5) (5.45 × 10−5) (5.3 × 10−5)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90282 0.90452 0.90762 0.90783 0.81609 0.81748 0.82138 0.82165

Linear-quadratic distance

Downstream -0.0056∗∗ -0.0055∗∗ -0.0050∗∗ -0.0052∗∗ -0.0077∗∗ -0.0076∗∗ -0.0072∗∗ -0.0073∗∗
(0.0027) (0.0026) (0.0025) (0.0025) (0.0035) (0.0036) (0.0035) (0.0035)

Downstream × Distance 2.64 × 10−5 2.01 × 10−5 5.75 × 10−6 5.45 × 10−6 0.0002 0.0001 0.0001 0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

Downstream × Distance2 −3.04 × 10−7 −4.7 × 10−7 −7.27 × 10−7 −7.35 × 10−7 −1.2 × 10−6 −1.17 × 10−6 −1.38 × 10−6 −1.36 × 10−6

(8.52 × 10−7) (8 × 10−7) (8.09 × 10−7) (7.99 × 10−7) (1.2 × 10−6) (1.2 × 10−6) (1.18 × 10−6) (1.18 × 10−6)
Distance 3.97 × 10−5 3.93 × 10−5 3.33 × 10−5 3.64 × 10−5 −4.23 × 10−6 1.24 × 10−6 1.17 × 10−5 −1.21 × 10−6

(9.08 × 10−5) (8.61 × 10−5) (8.93 × 10−5) (8.63 × 10−5) (0.0001) (0.0001) (0.0001) (0.0001)
Distance2 −2.43 × 10−7 −5.04 × 10−8 1.76 × 10−7 1.97 × 10−7 2.55 × 10−7 3.18 × 10−7 4.13 × 10−7 4.64 × 10−7

(6.32 × 10−7) (5.85 × 10−7) (6.05 × 10−7) (5.91 × 10−7) (9.26 × 10−7) (9.37 × 10−7) (9.11 × 10−7) (9.2 × 10−7)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.90283 0.90453 0.90762 0.90784 0.81612 0.81751 0.82142 0.82168

Exponential decay 𝛿 = 0.005 𝛿 = 0.006 𝛿 = 0.002 𝛿 = 0.002 𝛿 = 0.035 𝛿 = 0.035 𝛿 = 0.020 𝛿 = 0.010

exp−𝛿 × Distance × Downstream -0.0062∗∗∗ -0.0062∗∗∗ -0.0060∗∗∗ -0.0062∗∗∗ -0.0093∗∗∗ -0.0091∗∗∗ -0.0074∗∗ -0.0068∗∗
(0.0023) (0.0023) (0.0023) (0.0023) (0.0034) (0.0033) (0.0029) (0.0029)

Fit statistics
Observations 110,576 110,568 110,564 110,524 93,036 93,036 93,032 93,000
R2 0.901147 0.902842 0.905958 0.906169 0.812592 0.813949 0.817862 0.818141

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured in kilometer along the river network. Columns
(1)–(4) hold results from models for the overall EVI as proxy measure for vegetative health within basins, columns (5)–(8) for the
cropland-specific EVI as proxy measure for agricultural productivity. Models in columns (1) and (5) include no additional covariates, models
(2) and (6) control for geophysical variables (elevation, slope, and soil), models (3) and (7) additionally control for meteorological (yearly
sum of precipitation and yearly maximum temperature), and models (4) and (8) additionally control for socioeconomic (accessibility to city
in minutes and total population in 2015) conditions. All models include mine and year fixed effects. Standard errors are clustered at the mine
basin system level.
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Table E13: Distance specification using automatic bandwith selection

Max EVI Max C EVI

No Controls
Conventional -0.0048*** -0.0081*** -0.0088*** -0.0118***

(0.0017) (0.0021) (0.0024) (0.0027)
Bias-Corrected -0.0055*** -0.0086*** -0.0098*** -0.0120***

(0.0017) (0.0021) (0.0024) (0.0027)

Observations 33063 50360 30239 51370
Bandwidth (conv) 18.4 33.2 19.6 41.9
Bandwidth (bias) 42.1 67.5 47.3 78.5

With full Controls
Conventional -0.0028* -0.0055*** -0.0045* -0.0075**

(0.0017) (0.0021) (0.0023) (0.0031)
Bias-Corrected -0.0034** -0.0061*** -0.0054** -0.0083***

(0.0017) (0.0021) (0.0023) (0.0031)

Observations 34107 49372 29437 43370
Bandwidth (conv) 19 32.3 19 33.1
Bandwidth (bias) 42.6 65.6 44 65.4
Settings
Kernel Triangular Triangular Triangular Triangular
BW Criterion mserd mserd mserd mserd
Polynomial Linear Quadratic Linear Quadratic

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation (1), with distance
as measured in kilometer along the river network used as the running
variable, using practices suggested in Cattaneo, Idrobo, and Titiunik, 2019
for automatic bandwidth selection using a triangular Kernel and the mean
squared error distance as selection criterion, and bias correction. Models in
the upper panel include no covariates, models in the lower panel include
the full set of controls. Models in columns (1) and (2) report results
using the overall EVI as outcome, models in columns (3) and (4) for the
cropland-specific EVI. Models (1) and (3) fit a linear polynomial of the
distance measure at each side of the cutoff, models in columns (2) and
(4) a quadratic polynomial. All specifications include mine and year fixed
effects. Standard errors are clustered at the mine basin system level.
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Table E14: Estimation results using covariates as placebo outcomes for squared distance specification

Dependent Variables: Slope Elevation Temperature Precipitation Accessibility Population
Model: (1) (2) (3) (4) (5) (6)

Variables
Downstream -0.009 -23.4∗∗∗ 0.067 1.39 -3.63 -2,838.9∗

(0.095) (7.08) (0.047) (10.7) (6.90) (1,622.7)
Distance × Downstream 0.020∗∗∗ -3.12∗∗∗ -0.003 -0.068 -0.103 21.8

(0.004) (0.368) (0.003) (0.635) (0.385) (54.1)
Distance2 × Downstream −4.79 × 10−5 -0.001 −1.36 × 10−6 0.004 0.0003 -0.135

(3.8 × 10−5) (0.003) (2.17 × 10−5) (0.005) (0.003) (0.339)
Distance -0.011∗∗∗ 1.70∗∗∗ 0.002 0.400 0.850∗∗∗ -72.6

(0.003) (0.290) (0.002) (0.575) (0.275) (44.4)
Distance2 1.07 × 10−5 0.0008 −3.44 × 10−6 -0.004 -0.001 0.438

(2.91 × 10−5) (0.002) (1.85 × 10−5) (0.005) (0.002) (0.277)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,508 114,508 114,508 114,508 114,508 114,508
R2 0.75464 0.97225 0.95948 0.94458 0.88907 0.59487
Within R2 0.19301 0.63133 0.40933 0.08597 0.05976 0.01816

Clustered (mine basin) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation (1), with distance included as measured by the ordering of basins with respect to the
mine basin using the additionally used covariates as placebo outcomes for the full sample. All specifications control for the remaining
covariates except the one used as placebo outcome, as well as mine and year fixed effects. Standard errors are clustered at the mine basin
system level.
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