Mines \rightarrow Rivers \rightarrow Yields

Downstream Mining Impacts on Agriculture in Africa

Lukas Vashold (lukas.vashold@wu.ac.at) Gustav Pirich (gustav.pirich@wu.ac.at **Max Heinze** (maximilian.heinze@wu.ac.at) Nikolas Kuschnig (nikolas.kuschnig@wu.ac.at)

IAAE Conference 2025

June 25, 2025

Background

Methods and Data

Results

Mines – Curse or Blessing?

A Blessing?

- Demand for relevant **minerals** is projected to increase **fourfold** until 2050 (Hund et al., 2023).
- Extraction Benefits include:
 - enabling the green transition,
 - increasing local incomes (Bazillier & Girard, 2020),
 - and improving wealth and asset ownership (von der Goltz & Barnwal, 2019).

A Curse?

- Resource extraction causes negative externalities.
- Ecological effects include:
 - Mines use water and produce sediments and tailings (Moura et al., 2022).
 - Pollutants include mercury, sodium cyanide and lead

(Schwarzenbach et al., 2010).

• Industrial pollution harms plant growth (Ruppen et al., 2023).

How Pollution Travels

If water pollution from mines affects vegetation, we should observe reduced vegetation health downstream of a mine.

Using a **remotely-sensed vegetation index**, we find evidence for this.

Research Question

What is the causal effect of mining-induced water pollution on vegetation and agricultural productivity in Africa?

- We study this question in the context of Africa because
 - it has a **booming mining industry** (International Council on Mining and Metals [ICMM], 2022)
 - with many artisanal and small-scale mines (ASM Inventory, 2022; Girard et al., 2022)
 - and a lack of oversight and **containment facilities** (Kossoff et al., 2014; Macklin et al., 2023).

Background

Methods and Data

Results

How to Find Affected Areas

Our unit of observation is the **river basin**. Lehner and Grill (2013) provide a nested basin collection, of which we use the most granular level.

If we spill a cup of water anywhere in a basin, it always ends up in the next basin downstream.

Water moves from basins **upstream** to a mine to those **downstream**.

show more on basins

Mines

We use mine locations

from Maus et al.'s (2022) dataset, which includes both industrial and artisanal mining sites.

We designate **mine basins** and up to ten levels of **upstream** and **downstream** basins.

more maps

Intuition

Example of two Angolan mine basin systems with EVI measurements for croplands and general vegetation over years 2016, 2017, 2018, 2019, 2020, 2021, 2022, and 2023.

Variables and Observations

Outcome

- We use the Enhanced
 Vegetation Index (EVI) , which
 - is remotely sensed, and
 - ranges between –1 (water) and 1 (dense vegetation). Details

Observations and Covariates

• We observe the basins for T = 8

years. show order × status

 We collate covariates on topography (Amatulli et al., 2018), soil type (Hengl et al., 2017), climate (Abatzoglou et al., 2018), and socioeconomic characteristics. (Weiss et al., 2018)

Empirical Strategy (Spatial RDD)

$$y_{imt} = \boldsymbol{\beta}' F(x_i) + \boldsymbol{\theta}' W_{it} + \mu_m + \psi_t + \varepsilon_{imt},$$

where we let $F(\cdot)$ return indicators:

$$f(x)_j = \mathbb{I}(x = j) \text{ for } j \in \{-10, \dots, -2, 0, 1, \dots, 10\}.$$

- y_{imt} : **Outcome** of basin *i* near mine *m* in year *t*,
- μ_m , ψ_t : Mine and year **fixed effects**,
- W_{it}: Basin specific **covariates**.

β is identified under the assumption that there are no other discontinuous changes at the mine basin.

Background

Methods and Data

Results Overview

We find a **significant reduction** of vegetation health **downstream** of mines.

Impacts are particularly strong infertile regionsand wheregold miningpredominates.

These results are **robust** to varying the outcome measure, the sample, and the level of fixed effects.

Results: Figure

Results: Table

Peak vegetation is reduced by 1.28–1.35% relative to the mean on a total affected area of 255,000 km².

Peak cropland vegetation is reduced by **1.38–1.47%** on a total affected area of **74,000 km²**.

Outcome	Peak V	egetation	Peak Cro	pland Veg.
(Specification)	(Plain)	(Full)	(Plain)	(Full)
Individual Order				
Downstream (1 st)	-0.0045***	-0.0043**	-0.0051**	-0.0050**
	(0.0017)	(0.0018)	(0.0025)	(0.0025)
Downstream (2 nd)	-0.0049**	-0.0048**	-0.0058*	-0.0067**
	(0.0022)	(0.0024)	(0.0031)	(0.0032)
Downstream (3 rd)	-0.0085***	-0.0087***	-0.0088**	-0.0099***
	(0.0028)	(0.0029)	(0.0037)	(0.0038)
Downstream (4 th)	-0.0049*	-0.0062*	-0.0029	-0.0044
	(0.0030)	(0.0033)	(0.0038)	(0.0040)
Downstream (5 th)	-0.0034	-0.0053	0.0007	-0.0016
. ,	(0.0033)	(0.0037)	(0.0042)	(0.0045)
Pooled Order				
Downstream (1 st –3 rd)	-0.0057***	-0.0056***	-0.0064**	-0.0068***
	(0.0018)	(0.0020)	(0.0025)	(0.0026)
Controls	No	Yes	No	Yes
Mine and year FEs	Yes	Yes	Yes	Yes
Observations	110,576	110,524	93,036	93,000
Clustered (by mine-ba	sin) standard	errors in par	entheses	

Significance levels: ***: 0.01, **: 0.05, *: 0.1.

Results - What do these impacts mean?

- We use **survey data** from farmers in Africa (IFPRI, 2020) to estimate the crop yield–EVI elasticity.
- Our measure is highly predictive of crop yields. [show more]
- We estimate a **2.16–2.31% decrease** in the **vaule** of **overall crop production**.
- This amounts to a reduction in agricultural production of about 91,000 metric tons of cereals ,
- comparable to 5.4% of the 1.7 million tons thath the World Food Program (WFP) distributes annually.

Heterogeneity - Which areas are affected?

Treatment Estimates for Heterogeneous Subsets

Dashed vertical lines represent baseline estimates

Robustness

- Battery of robustness checks along several dimensions:
 - Additional covariates
 - Varying the outcome variable
 - Varying the sample specification
 - Varying fixed effect levels
 - Using continuous distance
- Additional validity checks of identifying assumptions:

Discussion & Limitations

- Water pollution is a convincing mediator, but we have no direct evidence.
 - Water quality data is sparse, especially in Africa (Jones et al., 2024).
 - We collect data on water pollution (United Nations Environment Programme, 2025), only for South Africa.
 - We find elevated pollutant levels in mine and downstream basins. Show more
- Noise from multiple data sources likely leads to attenuation of estimates.
 - EVI captures crop yields only indirectly, and
 - we cannot reliably estimate how far effects reach using this research design.
- We cannot disentangle artisanal and industrial mining.
- We do not directly observe **farmers' adaptive responses** (e.g., migrating upstream).

Conclusion

We identified the causal effects of mining

- on vegetation and agriculture,
- mediated by water pollution.

Our results show **negative impact** on vegetation and crop health.

Effects were particularly **strong** for larger mines, gold mining regions, and in regions with highly fertile croplands.

Results were **robust** to changes of treatment, outcome, sample, methods, and estimation procedures.

References (1)

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5(170191), 1-12. https://doi.org/10.1038/sdata.2017.191 Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018).A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5(180040), 1-15. https://doi.org/10.1038/sdata.2018.40 ASM Inventory, (2022), World Maps of Artisanal and Small-scale Mining. http://artisanalmining.org/Inventory/ Azzari, G., Jain, M., & Lobell, D. B. (2017). Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 202, 129-141. https://doi.org/10.1016/j.rse.2017.04.014 Bazillier, R., & Girard, V. (2020). The gold digger and the machine. Evidence on the distributive effect of the artisanal and industrial gold rushes in Burkina Faso. Journal of Development Economics, 143, 102411, https://doi.org/10.1016/i.jdeveco.2019.102411

References (2)

Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. *Remote Sensing of Environment*, *114*(6), 1312–1323. https://doi.org/10.1016/j.rse.2010.01.010
Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. *Agricultural and Forest Meteorology*, *173*, 74–84. https://doi.org/10.1016/j.agrformet.2013.01.007
Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2019, November). *A practical introduction to regression*

discontinuity designs: Foundations. Cambridge University Press.

https://doi.org/10.1017/9781108684606

Digital Earth Africa. (2022). Cropland extent maps for Africa (tech. rep.). (Dataset). DE Africa Services.

https://docs.digitalearthafrica.org/en/latest/data_specs/Cropland_extent_specs.html

Girard, V., Molina-Millán, T., Vic, G., et al. (2022). Artisanal mining in Africa. In *Working Paper Series No. 2201.* Novafrica.

References (3)

Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748 Hund, K., La Porta, D., Fabregas, T. P., Laing, T., & Drexhage, J. (2023). Minerals for climate action: The mineral intensity of the clean energy transition (tech. rep.). World Bank Group, Washington DC. United States. https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf IFPRI. (2020). AReNA's DHS-GIS database. https://doi.org/10.7910/DVN/OQIPRW International Council on Mining and Metals. (2022). Mining Contribution Index (MCI) (6th Edition). https://www.icmm.com/website/publications/pdfs/social-performance/2022/research_mci-6-ed.pdf?cb=16134

References (4)

Johnson, D. M. (2016). A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. *International Journal of Applied Earth Observation and Geoinformation*, *52*, 65–81. https://doi.org/10.1016/j.jag.2016.05.010

Jones, E. R., Graham, D. J., van Griensven, A., Flörke, M., & van Vliet, M. T. H. (2024).Blind spots in global water quality monitoring. *Environmental Research Letters*, 19(9), 091001. https://doi.org/10.1088/1748-9326/ad6919

Kolesár, M., & Rothe, C. (2018).Inference in regression discontinuity designs with a discrete running variable. American Economic Review, 108(8), 2277–2304. https://doi.org/10.1257/aer.20160945

Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014).Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. *Applied Geochemistry*, *51*, 229–245. https://doi.org/10.1016/j.apgeochem.2014.09.010

References (5)

Lehner, B., & Grill, G. (2013).Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems. *Hydrological Processes*, *27*(15), 2171–2186. https://doi.org/10.1002/hyp.9740

 Macklin, M. G., Thomas, C. J., Mudbhatkal, A., Brewer, P. A., Hudson-Edwards, K. A., Lewin, J., Scussolini, P., Eilander, D., Lechner, A., Owen, J., Bird, G., Kemp, D., & Mangalaa, K. R. (2023).Impacts of metal mining on river systems: A global assessment. *Science*, *381*(6664), 1345–1350. https://doi.org/10.1126/science.adg6704

Maus, V., Giljum, S., da Silva, D. M., Gutschlhofer, J., da Rosa, R. P., Luckeneder, S., Gass, S. L., Lieber, M., & McCallum, I. (2022). An update on global mining land use. *Scientific data*, 9(1), 1–11.

Moura, A., Lutter, S., Siefert, C. A. C., Netto, N. D., Nascimento, J. A. S., & Castro, F. (2022).Estimating water input in the mining industry in Brazil: A methodological proposal in a data-scarce context. *Extractive Industries and Society*, *9*, 101015. https://doi.org/10.1016/j.exis.2021.101015

References (6)

Ruppen, D., Runnalls, J., Tshimanga, R. M., Wehrli, B., & Odermatt, D. (2023). Optical remote sensing of large-scale water pollution in Angola and DR Congo caused by the Catoca mine tailings spill. International Journal of Applied Earth Observation and Geoinformation. 118. 103237. https://doi.org/10.1016/i.jag.2023.103237 Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, (Volume 35, 2010), 109-136. https://doi.org/10.1146/annurev-environ-100809-125342 United Nations Environment Programme. (2025). GEMStat database of the global environment monitoring system for freshwater (GEMS/Water) Programme [Accessed 21 February 2025. Available upon request from GEMS/Water Data Centre: gemstat.org]. von der Goltz, J., & Barnwal, P. (2019). Mines: The local wealth and health effects of mineral mining in developing countries. Journal of Development Economics, 139, 1-16. https://doi.org/10.1016/i.ideveco.2018.05.005

References (7)

Weiss, D. J., Nelson, A., Gibson, H. S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T. C. D., Howes, R. E., Tusting, L. S., Kang, S. Y., Cameron, E., Bisanzio, D., ... Gething, P. W. (2018). A global map of travel time to cities to assess inequalities in accessibility in 2015. *Nature*, *553*, 333–336. https://doi.org/10.1038/nature25181

Appendix

Appendix Basins

Our unit of observation is the river basin.

Lehner and Grill (2013) provide a nested basin collection, of which we use the **most** granular level.

If we spill a cup of water anywhere in a basin, it always ends up in the next basin

downstream .

Illustration from Lehner and Grill (2013)

Appendix Forked Upstream Basins

Multiple forked upstream (Level 12) basins join into a single mine basin further downstream. The superimposed yellow lines indicate Level 8 basins; these contain varying numbers of sub-basins (due to a level-skipping mechanism) and clearly divide tributary and main basins. The blue lines, which represent river streams, provide additional intuition for the basin topology.

Appendix Mine in Basin

Appendix Mine Cluster

Appendix Multiple Basin Chains

go b<u>ack</u>

Appendix Research Design

Illustration of the research design. The comparison of up- and downstream basins enables the identification of mine impacts that are mediated by the river.

Appendix A Proxy for Agricultural Activity

- We get a proxy for agricultural productivity like this:
 - (1) Filter out **cloud cover**.
 - (2) Aggregate the mean EVI per basin.
 - (3) Take the **annual maximum** per basin per year. \rightarrow Max. EVI

(4) Apply a **cropland mask** (Digital Earth Africa, 2022). \rightarrow Max. Cropland EVI

• This **Peak Vegetation Index** has been shown to proxy well for crop yields (Azzari et al., 2017; Becker-Reshef et al., 2010; Bolton & Friedl, 2013; Johnson, 2016).

Appendix Summary Statistics (100 back)

Unit	NT	Mean	St. Dev.	Min.	Max.
Index [-1, 1]	110,576	0.428	0.154	0.016	0.993
Index [-1, 1]	110,576	0.279	0.112	-0.021	0.578
Index [-1, 1]	93,036	0.464	0.133	-0.068	0.978
Index [-1, 1]	93,036	0.298	0.101	-0.104	0.601
Meters	110,568	820.4	481.1	-118.3	3,059.7
Degrees	110,568	2.23	2.34	0.0	20.9
Degree Celsius	110,572	34.3	3.9	15.6	48.8
Millimeters	110,576	901.8	595.2	0.64	4,456.7
Capita	110,576	8,471	37,716	0.0	1,396,921
Minutes	110,528	164.3	179.1	1.0	2,659.9
	Unit Index [-1,1] Index [-1,1] Index [-1,1] Index [-1,1] Meters Degrees Degrees Degrees Millimeters Capita Minutes	Unit NT Index [-1,1] 110,576 Index [-1,1] 10,576 Index [-1,1] 93,036 Index [-1,1] 93,036 Index [-1,1] 93,036 Degree [-1,1] 93,036 Degree [-1,1] 93,036 Degree [-1,1] 10,568 Degree Celsius 110,572 Millimeters 110,572 Capita 110,576 Minutes 110,572	Unit NT Mean Index [-1,1] 110,576 0.428 Index [-1,1] 10,576 0.279 Index [-1,1] 93,036 0.464 Index [-1,1] 93,036 0.298 Index [-1,1] 93,036 0.298 Meters 110,568 820.4 Degrees 110,576 34.3 Degrees Celsius 110,572 34.3 Millimeters 110,575 8,471 Capita 110,576 8,471 Minutes 110,528 164.3	Unit NT Mean St. Dev. Index [-1,1] 110,576 0.428 0.154 Index [-1,1] 110,576 0.279 0.112 Index [-1,1] 93,036 0.464 0.133 Index [-1,1] 93,036 0.298 0.101 Meters 110,568 82.04 481.1 Degreec 2 110,572 34.3 3.9 Millimeters 110,576 901.8 595.2 Capita 110,576 8,471 37,716 Minutes 110,528 164.3 179.1	Unit NT Mean St. Dev. Min. Index [-1,1] 110,576 0.428 0.154 0.016 Index [-1,1] 110,576 0.279 0.112 -0.021 Index [-1,1] 93,036 0.464 0.133 -0.068 Index [-1,1] 93,036 0.298 0.101 -0.104 Meters 110,568 820.4 4811 -118.3 Degrees 110,576 34.3 3.9 15.6 Degree Celsius 110,572 34.3 3.9 15.6 Millimeters 110,576 84.71 37,716 0.014 Capita 110,528 164.3 179.1 10.9

show balance

Appendix Impact Decay Assessment

To gauge effect reach, we re-estimate using an **exponential distance decay** function, $exp(-\delta d_{ij})$, where d_{ij} is the distance from the mine along the river

Appendix Impact Decay Assessment

- We re-estimate our main specification using an exponential decay function exp{-δd_{ij}}.
- **Hydrological studies** on dispersion patterns suggest using an exponential decay function.
- Since the **decay parameter** is not known, we conduct a grid search for $\delta \in [0.001, 2]$.
- We then use a **Bayesian model averaging** approach with BIC as marginal likelihood approximation.
- Finally, we compute the **mean effect decay** at increasing distances.

Appendix Basin Numbers

Up- and downstream range of mine-basins

Number of mine-basins with Y upstream and X downstream basins in the dataset.

Appendix Basins by Order

Order	Upstream N Distance		Dowr	nstream Distance
	/ •	Distance		Distance
0	(1900)	(0.0)	(1900)	(0.0)
1	847	13.9	1162	11.1
2	781	24.5	882	22.0
3	722	35.0	743	32.7
4	698	44.9	643	43.3
5	653	55.3	578	54.0
6	576	66.3	512	64.3
7	562	75.8	458	74.1
8	522	86.5	416	84.4
9	494	95.8	382	95.0
10	452	104.2	351	104.7

go back

Appendix Distribution of Mines

Appendix EVI Map

Appendix Croplands EVI Map

Appendix Temperature Map

Appendix Precipitation Map

Appendix Elevation Map

Appendix Slope Map

Appendix Commodity Type Prediction

Appendix Full Order Specification Results

Outcome	Peak Vegetation		Peak Cro	pland Veg.
(Specification)	(Plain) (Full)		(Plain)	(Full)
Individual Order	(ridin)	(i dii)	(1 (011))	(1 dil)
Downstream (1 st)	-0.0045***	-0.0043**	-0.0051**	-0.0050**
	(0.0017)	(0.0018)	(0.0025)	(0.0025)
Downstream (2 nd)	-0.0049**	-0.0048**	-0.0058*	-0.0067**
	(0.0022)	(0.0024)	(0.0031)	(0.0032)
Downstream (3 rd)	-0.0085***	-0.0087***	-0.0088**	-0.0099***
	(0.0028)	(0.0029)	(0.0037)	(0.0038)
Downstream (4 th)	-0.0049*	-0.0062*	-0.0029	-0.0044
	(0.0030)	(0.0033)	(0.0038)	(0.0040)
Downstream (5 th)	-0.0034 (0.0033)	-0.0053 (0.0037)	0.0007 (0.0042)	-0.0016 (0.0045)
Fit statistics Observations R ²	110,576 0.903	110,524 0.908	93,036 0.816	93,000 0.822
Pooled Order				
Downstream (1 st –3 rd)	-0.0057***	-0.0056***	-0.0064**	-0.0068***
	(0.0018)	(0.0020)	(0.0025)	(0.0026)
Fit statistics Observations R ²	110,576 0.903	110,524 0.908	93,036 0.816	93,000 0.822
Controls Geophysical	No	Yes	No	Yes
Meteorological	No	Yes	No	Yes
Socioeconomic	No	Yes	No	Yes
Fixed-effects Year (2016–2023) Mine	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Clustered (Mine) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Appendix Distance Specification Results

Dependent Variables:		Maximum Ve	egetation EVI			Maximum C	roplands EVI	
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Linear distance								
Downstream	-0.0050**	-0.0045**	-0.0033	-0.0034	-0.0050*	-0.0049*	-0.0041	-0.0042
	(0.0023)	(0.0022)	(0.0022)	(0.0022)	(0.0029)	(0.0029)	(0.0029)	(0.0029)
Downstream × Distance	-7.57 × 10 ⁻⁶	-3.59 × 10 ⁻⁵	-8.32 × 10 ⁻⁵	-8.47 × 10 ⁻⁵	1.47 × 10 ⁻⁵	-4.19 × 10 ⁻⁶	-5.85 × 10 ⁻⁵	-5.96 × 10 ⁻⁵
	(4.69 × 10 ⁻⁵)	(5.36 × 10 ⁻⁵)	(5.38 × 10 ⁻⁵)	(5.32 × 10 ⁻⁵)	(5.85 × 10 ⁻⁵)	(6.91 × 10 ⁻⁵)	(6.96 × 10 ⁻⁵)	(6.94 × 10 ⁻⁵)
Distance	7.75 × 10 ⁻⁶	3.26 × 10 ⁻⁵	5.61 × 10 ⁻⁵	6.18 × 10 ⁻⁵	2.75 × 10 ⁻⁵	4.08 × 10 ⁻⁵	6.32 × 10 ⁻⁵	5.66 × 10 ⁻⁵
	(3.91 × 10 ⁻⁵)	(4.13 × 10 ⁻⁵)	(4.12 × 10 ⁻⁵)	(4.04 × 10 ⁻⁵)	(4.97 × 10 ⁻⁵)	(5.45 × 10 ⁻⁵)	(5.45 × 10 ⁻⁵)	(5.3 × 10 ⁻⁵)
Fit statistics								
Observations	110,576	110,568	110,564	110,524	93,036	93,036	93,032	93,000
R ²	0.90282	0.90452	0.90762	0.90783	0.81609	0.81748	0.82138	0.82165
Lipear-guadratic distance								
Downstream	-0.0056	-0.0055	-0.0050	-0.0052	-0.0077	-0.0076	-0.0072	-0.0073
Deventer Pietres	(0.0027)	(0.0026)	(0.0025)	(0.0025)	(0.0035)	(0.0036)	(0.0035)	(0.0035)
Downstream × Distance	2.64 × 10 -	2.01 × 10 -	5.75 × 10 -	5.45 × 10 -	(0.0002)	(0.0001	(0.0001	(0.0001
Downstream - Distance?	-2.04 × 10 ⁻⁷	(0.0001)	(0.0001)	-7.25 × 10-7	-1.2 × 10 ⁻⁶	-1.17 × 10 ⁻⁶	-1.28 × 10.5	-1.26 × 10 ⁻⁶
Downstream + Distance	(9 E2 × 10 ⁻⁷)	(8 × 10 ⁻⁷)	(8.00 × 10 ⁻⁷)	(7.00×10^{-7})	(1.2 × 10 ⁻⁶)	(1.2×10^{-6})	(1.18 × 10 ⁻⁶)	(1.10 × 10 ⁻⁶)
Distance	3.97 × 10 ⁻⁵	3.93 × 10 ⁻⁵	3 33 × 10 ⁻⁵	3.64 × 10 ⁻⁵	-4.23 × 10 ⁻⁶	1.24×10^{-6}	(1.18×10^{-5}) 1.17×10^{-5}	(1.18×10^{-6})
Distance	(9.08 × 10 ⁻⁵)	(8.61 × 10 ⁻⁵)	(8.93 × 10 ⁻⁵)	(8.63 × 10 ⁻⁵)	(0.0001)	(0,0001)	(0,0001)	(0.0001)
Distance ²	-2 43 × 10 ⁻⁷	-5.04 × 10 ⁻⁸	1.76×10^{-7}	1.97×10^{-7}	2.55×10^{-7}	3 18 × 10 ⁻⁷	4 13 × 10 ⁻⁷	4.64 × 10 ⁻⁷
Distance	(6.32 × 10 ⁻⁷)	(5.85×10^{-7})	(6.05×10^{-7})	(5.91×10^{-7})	(9.26×10^{-7})	(9.37×10^{-7})	(9.11×10^{-7})	(9.2×10^{-7})
Fit statistics	(0.0210)	(0100 10)	(0.00 10)	(0.01 - 10)	(012010.)	(0107 10)	(0111-10-7	(012 - 10)
Observations	110,576	110,568	110,564	110,524	93,036	93,036	93,032	93,000
R ²	0.90283	0.90453	0.90762	0.90784	0.81612	0.81751	0.82142	0.82168
Exponential decay	δ = 0.005	δ = 0.006	δ = 0.002	δ = 0.002	δ = 0.035	δ = 0.035	δ = 0.020	δ = 0.010
exp =δ x Distance x Downstream	-0.0062***	-0.0062***	-0.0060***	-0.0062***	-0.0093***	-0.0091***	-0.0074**	-0.0068**
exp o a bistance a bonnoticam	(0.0023)	(0.0023)	(0.0023)	(0.0023)	(0.0034)	(0.0033)	(0.0029)	(0.0029)
Fit statistics								
Observations	110.576	110,568	110,564	110.524	93.036	93.036	93.032	93.000
R ²	0.901147	0.902842	0.905958	0.906169	0.812592	0.813949	0.817862	0.818141
Fixed-effects								
Year	Yes	Yes						
Mine	Yes	Yes						

Clustered (mine basin) standard-errors in parentheses

Significance: ***: 0.01, **: 0.05, *: 0.1

Appendix Varying Sample Definition

Dependent Variables:		N	laximum EVI				Maxim	um Cropland	EVI	
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
<i>Variables</i> Downstream x Order = 0	-0.0059*** (0.0013)	-0.0076*** (0.0014)	-0.0062*** (0.0012)			-0.0095*** (0.0020)	-0.0082*** (0.0024)	-0.0094*** (0.0022)		
Downstream x Order = 1	-0.0057*** (0.0017)	-0.0053*** (0.0020)	-0.0053*** (0.0017)	-0.0049** (0.0020)	-0.0051** (0.0021)	-0.0061** (0.0026)	-0.0049 (0.0032)	-0.0051* (0.0030)	-0.0061** (0.0030)	-0.0069* (0.0039)
Downstream x Order = 2	-0.0066*** (0.0021)	-0.0054** (0.0026)		-0.0056** (0.0023)		-0.0062** (0.0030)	-0.0057 (0.0037)		-0.0062* (0.0033)	
<i>Fixed-effects</i> Year Mine	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Fit statistics Observations R ² Within R ²	114,496 0.92395 0.05582	61,712 0.91566 0.05702	32,360 0.93993 0.05650	99,320 0.92392 0.05511	9,168 0.93378 0.07364	94,604 0.78597 0.02531	50,914 0.76613 0.02382	27,589 0.84032 0.03446	81,278 0.78332 0.02322	7,623 0.81766 0.03884

Clustered (Mine) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Appendix Varying Outcome / Fixed Effects

Dependent Variables:	(4)	Maximum EVI	(0)	Mean EVI	Maxir	num Croplan	d EVI	Mean C EVI	ESA C EVI
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables									
Downstream x Order = 0	-0.0059***	-0.0065***	-0.0079***	-0.0048***	-0.0095***	-0.0104***	-0.0109***	-0.0073***	-0.0048*
	(0.0013)	(0.0013)	(0.0014)	(0.0009)	(0.0020)	(0.0020)	(0.0021)	(0.0013)	(0.0026)
Downstream x Order = 1	-0.0057***	-0.0060***	-0.0066***	-0.0035***	-0.0061**	-0.0062**	-0.0064***	-0.0043**	-0.0035
	(0.0017)	(0.0016)	(0.0017)	(0.0011)	(0.0026)	(0.0025)	(0.0025)	(0.0017)	(0.0032)
Downstream x Order = 2	-0.0066***	-0.0064***	-0.0067***	-0.0038***	-0.0062**	-0.0058**	-0.0064**	-0.0055***	-0.0015
	(0.0021)	(0.0020)	(0.0020)	(0.0013)	(0.0030)	(0.0029)	(0.0028)	(0.0019)	(0.0035)
Fixed-effects									
Year	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mine	Yes			Yes	Yes			Yes	Yes
Pfaffstetter basin level 8		Yes				Yes			
Pfaffstetter basin level 6			Yes				Yes		
Fit statistics									
Observations	114,496	114,496	114,496	114,496	94,604	94,604	94,604	94,604	67,649
R ²	0.92395	0.91954	0.90419	0.95707	0.78597	0.77061	0.74193	0.88641	0.80154
Within R ²	0.05582	0.06500	0.08647	0.11783	0.02531	0.02957	0.04285	0.04478	0.02553

Clustered (Mine) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Appendix Placebo Outcomes

Dependent Variables: Model:	Elevation (1)	Slope (2)	Max. Temp (3)	Precipitation (4)	Accessibility in 2015 (5)	Population in 2015 (6)
Variables						
Downstream	-6.852	-0.0538	-0.0137	0.6025	-5.427	2,125.7
	(8.509)	(0.0912)	(0.0567)	(3.934)	(5.531)	(1,589.8)
Distance × Downstream	-5.008***	-0.0060	0.0135***	-0.1942	0.0839	-182.9***
	(0.4814)	(0.0044)	(0.0036)	(0.2860)	(0.3278)	(55.80)
Distance ² × Downstream	0.0043	–8.25 × 10 ⁻⁶	2.12 × 10 ^{−6}	0.0003	0.0004	1.081***
	(0.0039)	(4.01 × 10⁻⁵)	(3.36 × 10⁻⁵)	(0.0020)	(0.0028)	(0.3463)
Distance	2.326***	0.0025	-0.0067**	0.0879	0.7557***	-54.72
	(0.4215)	(0.0039)	(0.0032)	(0.2129)	(0.2587)	(45.17)
Distance ²	0.0005	1.12 × 10 ^{−6}	–5.34 × 10 ⁻⁶	-0.0005	-0.0013	0.3439
	(0.0033)	(3.49 × 10 ⁻⁵)	(3.1 × 10 ^{−5})	(0.0015)	(0.0021)	(0.2724)
Fixed-effects						
Year	Yes	Yes	Yes	Yes	Yes	Yes
Mine	Yes	Yes	Yes	Yes	Yes	Yes
Fit statistics						
Observations	114,616	114,616	114,616	114,616	114,576	114,536
R ²	0.95627	0.70192	0.95579	0.96187	0.88768	0.59121
Within R ²	0.41042	0.01108	0.07605	0.00070	0.04659	0.00851

Clustered (Mine) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Appendix Placebo Outcomes

Figure: Order estimates when using elevation, slope, temperature, precipitation, accessibility to cities, and population as placebo outcomes.

Appendix Matching Exercise

levation	•					0
lope	•		••••••			
oilgridAcrisols	•					0
oilgridAlisols	• • • • • • • • • • • • • • • • • • • •					
oilgridAndosols	• • • • • • • • • • • • • • • • • • •					
oilgridArenosols	•			0		
oilgridCalcisols	•		0			
oilgridCambisols	•		o			
oilgridFerralsols	• • • • • • • • •	,				
oilgridFluvisols	•	·····		.		
oilgridGleysols	•			0		
oilgridHistosols	•					
oilgridKastanozems	• •					
oilgridLeptosols	•		0			
oilgridLixisols	• • • • • • • • • • • • • • • • • • • •					
oilgridLuvisols	•	o				
oilgridNitisols	•					
oilgridNo data	•	0				
oilgridPhaeozems	•	o				
oilgridPlanosols	• • •					
oilgridPlinthosols	• •					
oilgridPodzols	•••					
oilaridReaosols		0				
oilgridSolonchaks			0			
oilgridSolonetz	• • • • • •					
oilgridVertisols				L	F	
emperature					0	o All
recipitation	-		0		-	 Matched
roopiation	Ľ	_	-			
	0.00	0.05	0.	10	0.15	0.20
			ADSOIUTE S	Standard	nzed	
			1/10/2011	71114414410		

Balance of elevation, slope, temperature, and precipitation before and after

matching. go back

Appendix Dist. Spec. w/ Aut. Bandwith Selection (No Controls)

	Мах	(EVI	Max C EVI		
	Conv. Bias-Corr.		Conv.	Bias-Corr.	
Conventional	-0.0050*** (0.0015)	-0.0056*** (0.0015)	-0.0112*** (0.0020)	-0.0116*** (0.0025)	
Observations Bandwidth (Conv) Bandwidth (Bias)	37,880 20.3 46.4	37,880 20.3 46.4	32,813 20.7 47.4	32,813 20.7 47.4	

Note: Table shows results for estimation of 11, with distance as measured in kilometer along the river network used as the running variable, using practices suggested in Cattaneo et al., 2019 for automatic bandwidth selection using a triangular Kernel and the mean squared error distance as selection criterion, and bias correction. Models in the upper panel include no covariates, models in the lower panel include the full set of controls. Models in columns (1) and (2) report results using the overall EVI as outcome, models in columns (3) and (4) for the cropland-specific EVI. Models (1) and (3) fit a linear polynomial of the distance measure at each side of the cutoff, models in columns (2) and (4) a quadratic polynomial. All specifications include mine and year

fixed effects. Standard errors are clustered at the mine basin system level.

Significance Codes: *** p<0.01, ** p<0.05, * p<0.1 · Clustered (Mine) standard errors in parentheses.

Appendix Dist. Spec. w/ Aut. Bandwith Selection (Full Controls)

	Мах	EVI	Max C EVI			
	Conv. Bias-Corr.		Conv.	Bias-Corr.		
With Full Controls						
Conventional	-0.0045*** (0.0015)	-0.0049*** (0.0015)	-0.0100*** (0.0020)	-0.0118*** (0.0026)		
Observations Bandwidth (Conv) Bandwidth (Bias)	38,200 20.6 43.4	38,200 20.6 43.4	32,629 20.5 45.4	32,629 20.5 45.4		

Note: Table shows results for estimation of 11, with distance as measured in kilometer along the river network used as the running variable, using practices suggested in Cattaneo et al., 2019 for automatic bandwidth selection using a triangular Kernel and the mean squared error distance as selection criterion, and bias correction. Models in the upper panel include no covariates, models in the lower panel include the full set of controls. Models in columns (1) and (2) report results using the overall EVI as outcome, models in columns (3) and (4) for the cropland-specific EVI. Models (1) and (3) fit a linear polynomial of the distance measure at each side of the cutoff, models in columns (2) and (4) a quadratic polynomial. All specifications include mine and year

fixed effects. Standard errors are clustered at the mine basin system level.

Significance Codes: *** p<0.01, ** p<0.05, * p<0.1 · Clustered (Mine) standard errors in parentheses.

Appendix Permutation - Robustness

Randomized treatment

Figure: Estimation results when the treatment status (i.e., whether basins are down- or upstream) is randomized (5,000 runs, balance between statuses is kept). The red crosses indicate estimation results for the main specification.

Appendix Ord. Spec. w/ Aut. Bandwith Selection (Full Controls)

		Max EVI	Max C EVI		
	No Cluster	Cluster (Mine Basin)	No Cluster	Cluster (Mine Basin)	
		No Controls			
l(order>0)	-0.0048 (0.0013)	-0.0048 (0.0019)	-0.0090*** (0.0018)	-0.0090** (0.0030)	
Observations Bandwidth	45,613 2	45,613 2	38,537 2	38,537 2	

Note: Table shows results for estimation of 11, with distance as measured by the ordering of basins with respect to the mine basin as the running variable, using practices suggested in Kolesár and Rothe, 2018 for automatic bandwidth selection using a triangular Kernel and the mean squared error distance as selection criterion. Models in the upper panel include no covariates, models in the lower panel include the full set of controls. Models in columns (1) and (2) report results using the overall EVI as outcome, models in columns (3) and (4) for the cropland-specific EVI. Models (1) and (3) do no cluster standard errors, models in columns (2) and (4) cluster standard errors are at the mine basin system level. All specifications include mine and year fixed effects.
Significance Codes: *** p<0.01. ** p<0.05. * p<0.1</p>

Appendix Validation of Outcome IFPRI

Outcome:	In(Crops, Value)	In(Crops, FY)	In(Cereals, Value)	In(Cereals, Yield)	In(Cereals, FY)
Model:	(1)	(2)	(3)	(4)	(5)
<i>Variables</i>	3.398***	0.9519***	2.489***	0.8995***	0.5589**
Max. Cropland EVI	(0.4230)	(0.1828)	(0.9150)	(0.1586)	(0.2704)
Fixed effects Wave	Yes	Yes	Yes	Yes	Yes
<i>Fit statistics</i> Observations R ² Within R ²	44,682 0.65336 0.08225	44,380 0.35656 0.00717	44,682 0.50120 0.02177	44,682 0.60944 0.02195	44,171 0.32956 0.00153

Clustered (wave) standard-errors in parentheses Significance: ***: 0.01, **: 0.05, *: 0.1

Appendix Water Pollution Data for South Africa

