Econometrics I
March 6, 2025
The statements on the previous slide all concern the conditional expectation of a dependent variable \(y\), given an explanatory variable \(x\).
Conditional expectations are an important measure that relates a dependent variable \(y\) to an explanatory variable \(x\), for example like this:
\[ \mathrm{E}\left(\textcolor{var(--primary-color)}{y}\mid\textcolor{var(--secondary-color)}{x}\right) = 0.4 + 0.5\textcolor{var(--secondary-color)}{x} \]
In this way, we can divide variation in the dependent variable \(y\) into two components:
When we evaluate certain measures, we are often interested in understanding differences between different groups.
Two examples:
In both cases we are examining the average treatment effect (ATE): the average effect of a “treatment” relative to no “treatment”.
We might also be interested in predicting an outcome for a specific initial situation.
Suppose we know the distribution of class size and test scores. For a new district, we only know the class size. What is the best prediction for the test scores in the new district?
If we minimize a quadratic loss function, our best prediction will be the conditional mean.
We now want to model the Conditional Expectation Function of a given random variable \(y\) depending on another random variable \(x\).
The simplest way to do that: we assume a linear function.
\[ \mathrm{E}(\textcolor{var(--primary-color)}{y_i}\mid\textcolor{var(--secondary-color)}{x_i}) = \beta_0 + \beta_1 \textcolor{var(--secondary-color)}{x_i}, \]
where
\[ \mathrm{E}(\textcolor{var(--primary-color)}{y_i}\mid\textcolor{var(--secondary-color)}{x_i}) = \beta_0 + \beta_1 \textcolor{var(--secondary-color)}{x_i}, \]
This function gives us information about the expected value of \(y_i\) for a given value \(x_i\), and only that.
Suppose the conditional expectation function for test scores given a certain class size is
\[ \mathrm{E}(\textcolor{var(--primary-color)}{\text{TestScores}_i}\mid\textcolor{var(--secondary-color)}{\text{ClassSize}_i}) = 720 - 0.6 \times \textcolor{var(--secondary-color)}{\text{ClassSize}_i}, \]
Suppose the conditional expectation function for test scores given a certain class size is
\[ \mathrm{E}(\textcolor{var(--primary-color)}{\text{TestScores}_i}\mid\textcolor{var(--secondary-color)}{\text{ClassSize}_i}) = 720 - 0.6 \times \textcolor{var(--secondary-color)}{\text{ClassSize}_i}, \]
what can we then say about test scores in a new district with a class size of 20?
In blue we see ou